The World's Largest Public Domain Media Search Engine

three instruments

public
171 media by topicpage 1 of 2
KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers observe the canister being lifted from the Swift spacecraft, which is enclosed in a protective cover. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. KSC-04pd1587

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Fo...

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers observe the canister being lifted from the Swift spacecraft, which is enclosed in a protective cover. Swift is ... More

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, the Swift spacecraft is revealed. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.   It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7. KSC-04pd1615

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force ...

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, the Swift spacecraft is revealed. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray bu... More

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians perform blanket closeouts on the Swift spacecraft.  The blankets provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission. KSC-04pd2080

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force ...

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians perform blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift i... More

VANDENBERG AIR FORCE BASE, CALIF.  --  At Vandenberg Air Force Base in California, a worker monitors the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket.  The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0659

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in...

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, a worker monitors the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is t... More

VANDENBERG AIR FORCE BASE, CALIF. --  Seen at Vandenberg Air Force Base in California is the fairing (foreground) for the Orbital Sciences Pegasus XL rocket. In the background is the third stage, under the clean room tent. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0657

VANDENBERG AIR FORCE BASE, CALIF. -- Seen at Vandenberg Air Force Bas...

VANDENBERG AIR FORCE BASE, CALIF. -- Seen at Vandenberg Air Force Base in California is the fairing (foreground) for the Orbital Sciences Pegasus XL rocket. In the background is the third stage, under the clea... More

KENNEDY SPACE CENTER, FLA.  --  In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0776

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg A...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft. AIM, which stands for Aeronomy of ... More

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket is ready for mating to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  Launch from the Pegasus XL rocket is scheduled for April 25. KSC-07pd0990

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in Californ...

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket is ready for mating to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesospher... More

KENNEDY SPACE CENTER, FLA. --  At Vandenberg Air Force Base in California, under the protective clean tent, technicians move the second half of the fairing into place around the AIM spacecraft. The fairing is a molded structure that fits around the spacecraft and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch. Launch will be from a Pegasus XL rocket, carried and released by Orbital Sciences L-1011 jet aircraft.  AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25. KSC-07pd0970

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in Califor...

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, under the protective clean tent, technicians move the second half of the fairing into place around the AIM spacecraft. The fairing is a... More

STS-61 art concept of astronauts during HST servicing

STS-61 art concept of astronauts during HST servicing

S93-48826 (November 1993) --- This artist's rendition of the 1993 Hubble Space Telescope (HST) servicing mission shows astronauts installing the new Wide Field/Planetary Camera (WF/PC 2). The instruments to rep... More

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), an overhead crane raises the Swift spacecraft, wrapped in a protective cover, to vertical before being placed on a work stand.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. KSC-04pd1589

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Fo...

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), an overhead crane raises the Swift spacecraft, wrapped in a protective cover, to vertical before being placed on a work... More

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers attach straps from an overhead crane onto the platform under the Swift spacecraft, which is enclosed in a protective cover.  Swift will be raised to vertical and placed on a work stand.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. KSC-04pd1588

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Fo...

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers attach straps from an overhead crane onto the platform under the Swift spacecraft, which is enclosed in a prote... More

KENNEDY SPACE CENTER, FLA. - Hangar AE, Cape Canaveral Air Force Station, a technician trims blanket material that will be installed around the Swift spacecraft.  The blankets provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission. KSC-04pd2077

KENNEDY SPACE CENTER, FLA. - Hangar AE, Cape Canaveral Air Force Stati...

KENNEDY SPACE CENTER, FLA. - Hangar AE, Cape Canaveral Air Force Station, a technician trims blanket material that will be installed around the Swift spacecraft. The blankets provide thermal stability during t... More

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John DiBatilito is at right.  Swift is wrapped with blankets to provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission. KSC-04pd2110

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) doe...

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John DiBatilito is at right. Swift is wrapped wit... More

VANDENBERG AIR FORCE BASE, CALIF. --  Inside a clean room at Vandenberg Air Force Base in California, workers stand beside NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft, waiting for an overhead crane.  AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0674

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenber...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenberg Air Force Base in California, workers stand beside NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft, waiting for an overhead c... More

VANDENBERG AIR FORCE BASE, CALIF.  --   In a clean-room environment at North Vandenberg Air Force Base, a technician prepares the lights for illumination testing of the AIM spacecraft at left.  The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0702

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at...

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, a technician prepares the lights for illumination testing of the AIM spacecraft at left. The AIM spacecra... More

KENNEDY SPACE CENTER, FLA.  --   In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the AIM spacecraft onto a moveable stand. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0789

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg ...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the AIM spacecraft onto a moveable stand. AIM, which stands for Aeronomy of Ice in the Mesos... More

KENNEDY SPACE CENTER, FLA.  --  At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing.  AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0793

KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in ...

KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosph... More

KENNEDY SPACE CENTER, FLA. --  At Vandenberg Air Force Base in California, technicians prepare the AIM spacecraft for fairing installation.  The fairing is a molded structure that fits around the spacecraft and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch.  Launch will be from a Pegasus XL rocket, carried and released by Orbital Sciences L-1011 jet aircraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25. KSC-07pd0965

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in Califor...

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, technicians prepare the AIM spacecraft for fairing installation. The fairing is a molded structure that fits around the spacecraft and... More

KENNEDY SPACE CENTER, FLA. --  In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is ready for mating with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS.  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed.   Photo credit: NASA/Jim Grossmann KSC-07pd2445

KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch P...

KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is ready for mating with the waiting Delta II rocket. Dawn is scheduled for... More

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped in Hangar AE at Cape Canaveral Air Force Station.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.   It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7. KSC-04pd1612

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped i...

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped in Hangar AE at Cape Canaveral Air Force Station. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma... More

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians take a final look at the blankets installed on the Swift spacecraft.  The blankets provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission. KSC-04pd2083

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force ...

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians take a final look at the blankets installed on the Swift spacecraft. The blankets provide thermal stability during the... More

KENNEDY SPACE CENTER, FLA. - At Launch Pad 17-A on Cape Canaveral Air Force Station, the second stage of the Boeing Delta II launch vehicle  is being lifted up the mobile service tower for mating with the first stage. The rocket is the launch vehicle for the Swift spacecraft and its Gamma-Ray Burst Mission, now scheduled for liftoff Nov. 8.  Swift is a medium-class Explorer mission managed by NASA’s Goddard Space Flight Center in Greenbelt, Md.  It is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. KSC is responsible for Swift’s integration with the Boeing Delta II rocket and the countdown management on launch day. KSC-04pd2116

KENNEDY SPACE CENTER, FLA. - At Launch Pad 17-A on Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. - At Launch Pad 17-A on Cape Canaveral Air Force Station, the second stage of the Boeing Delta II launch vehicle is being lifted up the mobile service tower for mating with the first... More

KENNEDY SPACE CENTER, FLA.  --  Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians place a star tracker cover on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0700

KENNEDY SPACE CENTER, FLA. -- Inside the clean-room "tent" of Buildi...

KENNEDY SPACE CENTER, FLA. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians place a star tracker cover on the AIM spacecraft during testing of the solar array p... More

VANDENBERG AIR FORCE BASE, CALIF.  -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians in bunny suits prepare for the solar array deployment on the AIM spacecraft. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0695

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of ...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians in bunny suits prepare for the solar array deployment on the AIM spacecraft. T... More

VANDENBERG AIR FORCE BASE, CALIF.  -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians in bunny suits prepare for the solar array deployment on the AIM spacecraft. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0693

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of ...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians in bunny suits prepare for the solar array deployment on the AIM spacecraft. T... More

KENNEDY SPACE CENTER, FLA.  --  Flight simulation No. 3 is on the schedule for the Pegasus XL launch vehicle, seen here in Building 1555 on North Vandenberg Air Force Base in California.  AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0775

KENNEDY SPACE CENTER, FLA. -- Flight simulation No. 3 is on the sche...

KENNEDY SPACE CENTER, FLA. -- Flight simulation No. 3 is on the schedule for the Pegasus XL launch vehicle, seen here in Building 1555 on North Vandenberg Air Force Base in California. AIM, which stands for ... More

KENNEDY SPACE CENTER, FLA. --    At Vandenberg Air Force Base in California, under the protective clean tent, technicians begin installing the fairing around the AIM spacecraft. The fairing is a molded structure that fits around the spacecraft and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch. Launch will be from a Pegasus XL rocket, carried and released by Orbital Sciences L-1011 jet aircraft.  AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25. KSC-07pd0968

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in Calif...

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, under the protective clean tent, technicians begin installing the fairing around the AIM spacecraft. The fairing is a molded structur... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers guide the upper transportation canister as it is lowered onto the Dawn spacecraft.  The canister will be attached to the bottom segments already in place.  The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  Photo credit: NASA/Jim Grossmann KSC-07pd2406

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusvi...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers guide the upper transportation canister as it is lowered onto the Dawn spacecraft. The canister will be attached to the ... More

KENNEDY SPACE CENTER, FLA. --   On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is moved toward the opening above the Delta II rocket in the mobile service tower.  Dawn will be mated with the Delta in preparation for launch.    Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller KSC-07pd2429

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral A...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is moved toward the opening above the Delta II rocket in the mobile service tower. Dawn will be mated... More

KENNEDY SPACE CENTER, FLA. -- A worker monitors the progress of the retraction of the mobile service tower, or gantry, from the Delta II rocket on Launch Pad 17B at Cape Canaveral Air Force Station.  Starting with a boost from this higher thrust version of the Delta II rocket, the Dawn spacecraft will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission during its nearly decade-long mission, Dawn will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field, and thus, bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed.  Launch is targeted for Sept. 27 during a window that extends from 7:20 to 7:49 a.m. EDT.   Photo credit: NASA/Kim Shiflett KSC-07pd2579

KENNEDY SPACE CENTER, FLA. -- A worker monitors the progress of the re...

KENNEDY SPACE CENTER, FLA. -- A worker monitors the progress of the retraction of the mobile service tower, or gantry, from the Delta II rocket on Launch Pad 17B at Cape Canaveral Air Force Station. Starting w... More

Space Shuttle Columbia, Spacelab, Space Shuttle Program, NASA

Space Shuttle Columbia, Spacelab, Space Shuttle Program, NASA

This photograph was taken during the integration of the Astro-1 mission payloads at the Kennedy Space Center on March 20, 1990, showing the Broad Band X-Ray Telescope (BBXRT) at the left, as three telescopes fo... More

KENNEDY SPACE CENTER, FLA. -  Workers in Hangar AE, Cape Canaveral Air Force Station, meticulously clean the inside of a Boeing Delta fairing that will encapsulate the Swift spacecraft.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched into a low-Earth orbit on a Delta 7320 rocket in October 2004. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. KSC-04pd1528

KENNEDY SPACE CENTER, FLA. - Workers in Hangar AE, Cape Canaveral Air...

KENNEDY SPACE CENTER, FLA. - Workers in Hangar AE, Cape Canaveral Air Force Station, meticulously clean the inside of a Boeing Delta fairing that will encapsulate the Swift spacecraft. Swift is a first-of-its... More

KENNEDY SPACE CENTER, FLA. -  In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera,  places a new solar cell on the Swift spacecraft’s solar array.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky.  Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket. KSC-04pd1859

KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on...

KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera, places a new solar cell on the Swift spacecraft’s solar a... More

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician installs the blankets around the Swift spacecraft.  The blankets provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission. KSC-04pd2078

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force St...

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician installs the blankets around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is... More

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is in Hangar AE at Cape Canaveral Air Force Station.  Swift has been wrapped with blankets to provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission. KSC-04pd2104

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is in Hangar AE at C...

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is in Hangar AE at Cape Canaveral Air Force Station. Swift has been wrapped with blankets to provide thermal stability during the mission. Swift is a first-of... More

VANDENBERG AIR FORCE BASE, CALIF.  -- At Vandenberg Air Force Base in California, the three stages of the Orbital Sciences Pegasus XL are being mated for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft.  AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0650

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in ...

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, the three stages of the Orbital Sciences Pegasus XL are being mated for the launch of NASA's Aeronomy of Ice in the Mesosphere, ... More

VANDENBERG AIR FORCE BASE, CALIF.  -- At Vandenberg Air Force Base in California, a technician on the work stand  prepares the first stage of the Orbital Sciences Pegasus XL rocket, at left, to be mated to the second stage, at right, for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0653

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in ...

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, a technician on the work stand prepares the first stage of the Orbital Sciences Pegasus XL rocket, at left, to be mated to the ... More

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, technicians discuss the process for mating the first and second stages of the Orbital Sciences Pegasus XL rocket in front of them.  The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft.  AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0654

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in C...

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, technicians discuss the process for mating the first and second stages of the Orbital Sciences Pegasus XL rocket in front of them... More

VANDENBERG AIR FORCE BASE, CALIF.  --   NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft arrives in a clean room at Vandenberg Air Force Base in California.  AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0663

VANDENBERG AIR FORCE BASE, CALIF. -- NASA's Aeronomy of Ice in the ...

VANDENBERG AIR FORCE BASE, CALIF. -- NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft arrives in a clean room at Vandenberg Air Force Base in California. AIM is the seventh Small Explorers missi... More

VANDENBERG AIR FORCE BASE, CALIF.  --  At Vandenberg Air Force Base in California, the second and third stages of the Orbital Sciences Pegasus XL rocket wait for mating.  The rocket is the launch vehicle for the NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft.  AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0662

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in...

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, the second and third stages of the Orbital Sciences Pegasus XL rocket wait for mating. The rocket is the launch vehicle for th... More

VANDENBERG AIR FORCE BASE, CALIF. --   Inside a clean room at Vandenberg Air Force Base in California, workers stand beside NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft, waiting for an overhead crane they will attach.  AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0667

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenbe...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenberg Air Force Base in California, workers stand beside NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft, waiting for an overhead ... More

VANDENBERG AIR FORCE BASE, CALIF.  --  In a clean-room environment at North Vandenberg Air Force Base, technicians remove covers from instruments in the AIM spacecraft while solar panels are partially deployed.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0708

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at ...

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, technicians remove covers from instruments in the AIM spacecraft while solar panels are partially deployed.... More

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right.   AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  Launch from the Pegasus XL rocket is scheduled for April 25. KSC-07pd0991

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in Californ...

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right. AIM, which stands for Aerono... More

Space Shuttle Columbia, Spacelab, Space Shuttle Program, NASA

Space Shuttle Columbia, Spacelab, Space Shuttle Program, NASA

This image shows a part of the Cygnus loop supernova remnant, taken by the Ultraviolet Imaging Telescope (UIT) on the Astro Observatory during the Astro-1 mission (STS-35) on December 5, 1990. Pictured is a por... More

KENNEDY SPACE CENTER, FLA. - - In Hangar AE at Cape Canaveral Air Force Station, the Swift spacecraft waits for final removal of the protective cover (at top).  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.   It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7. KSC-04pd1618

KENNEDY SPACE CENTER, FLA. - - In Hangar AE at Cape Canaveral Air Forc...

KENNEDY SPACE CENTER, FLA. - - In Hangar AE at Cape Canaveral Air Force Station, the Swift spacecraft waits for final removal of the protective cover (at top). Swift is a first-of-its-kind, multi-wavelength ob... More

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, a technician performs blanket closeouts on the Swift spacecraft.  The blankets provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission. KSC-04pd2081

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force ...

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, a technician performs blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift... More

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. Swift is wrapped with blankets to provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission. KSC-04pd2111

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales does touch...

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. Swift is wrapped with blankets to provide thermal stabili... More

VANDENBERG AIR FORCE BASE, CALIF. --   Inside a clean room at Vandenberg Air Force Base in California, workers begin lifting the shipping container from around NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft.  AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0664

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenbe...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenberg Air Force Base in California, workers begin lifting the shipping container from around NASA's Aeronomy of Ice in the Mesosphere, or AIM, ... More

VANDENBERG AIR FORCE BASE, CALIF.   --   Inside a clean room at Vandenberg Air Force Base in California, the shipping container removed from around NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft at left, is lowered onto the floor nearby. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0666

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vanden...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenberg Air Force Base in California, the shipping container removed from around NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft a... More

VANDENBERG AIR FORCE BASE, CALIF.  -- In Building 1555 at North Vandenberg Air Force Base, workers roll the AIM spacecraft into the "tent" where a partial deployment of the solar arrays on the spacecraft will take place. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0690

VANDENBERG AIR FORCE BASE, CALIF. -- In Building 1555 at North Vanden...

VANDENBERG AIR FORCE BASE, CALIF. -- In Building 1555 at North Vandenberg Air Force Base, workers roll the AIM spacecraft into the "tent" where a partial deployment of the solar arrays on the spacecraft will t... More

VANDENBERG AIR FORCE BASE, CALIF.  --  In a clean-room environment at North Vandenberg Air Force Base, lights are reflected on the solar array panels of the AIM spacecraft during illumination testing. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0704

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at ...

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, lights are reflected on the solar array panels of the AIM spacecraft during illumination testing. The AIM s... More

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, technicians prepare to mate the AIM spacecraft (at left) to the SoftRide isolation system on the Orbital Sciences Pegasus XL rocket.  The Cosmic Dust Experiment surfaces can be clearly seen as 12 rectangular areas on the aft portion of the spacecraft.  AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  Launch from the Pegasus XL rocket is scheduled for April 25. KSC-07pd0992

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in Californ...

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, technicians prepare to mate the AIM spacecraft (at left) to the SoftRide isolation system on the Orbital Sciences Pegasus XL rocket. Th... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers check the fitting on the lower transportation canister segments in place around the upper stage booster beneath the Dawn spacecraft.  The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS).  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  Photo credit: NASA/Jim Grossmann KSC-07pd2404

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusvi...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers check the fitting on the lower transportation canister segments in place around the upper stage booster beneath the Dawn ... More

KENNEDY SPACE CENTER, FLA. --  On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lifted off its transporter.  Dawn will be lifted into the mobile service tower and prepared for mating with the awaiting Delta II rocket.Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller KSC-07pd2425

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Ai...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lifted off its transporter. Dawn will be lifted into the mobile service tower and prepared for mati... More

KENNEDY SPACE CENTER, FLA. --  On Launch Pad 17-B at Cape Canaveral Air Force Station, workers in the mobile service tower keep watch as the Dawn spacecraft is lowered toward the awaiting Delta II rocket.  Dawn will be mated with the Delta in preparation for launch.  Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller KSC-07pd2431

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Ai...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, workers in the mobile service tower keep watch as the Dawn spacecraft is lowered toward the awaiting Delta II rocket. Dawn... More

KENNEDY SPACE CENTER, FLA. --    In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers remove the lower segments of the transportation canister away from the Dawn spacecraft.  After removal of the canister, Dawn will be mated with the waiting Delta II rocket.  Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS.  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed.   Photo credit: NASA/Jim Grossmann KSC-07pd2444

KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch...

KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers remove the lower segments of the transportation canister away from the Dawn spacecraf... More

KENNEDY SPACE CENTER, FLA. -- The Delta II rocket is revealed as the mobile service tower, or gantry (at right), is retracted on Launch Pad 17B at Cape Canaveral Air Force Station. Starting with a boost from this higher thrust version of the Delta II rocket, the Dawn spacecraft will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission during its nearly decade-long mission, Dawn will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field, and thus, bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed.  Launch is targeted for Sept. 27 during a window that extends from 7:20 to 7:49 a.m. EDT.   Photo credit: NASA/Kim Shiflett KSC-07pd2578

KENNEDY SPACE CENTER, FLA. -- The Delta II rocket is revealed as the m...

KENNEDY SPACE CENTER, FLA. -- The Delta II rocket is revealed as the mobile service tower, or gantry (at right), is retracted on Launch Pad 17B at Cape Canaveral Air Force Station. Starting with a boost from th... More

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped in Hangar AE at Cape Canaveral Air Force Station.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.   It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7. KSC-04pd1611

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped i...

KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped in Hangar AE at Cape Canaveral Air Force Station. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma... More

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers look at the final pieces of protective cover on the Swift spacecraft that must be removed.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.   It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7. KSC-04pd1616

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force ...

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers look at the final pieces of protective cover on the Swift spacecraft that must be removed. Swift is a first... More

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician works on a blanket installed around the Swift spacecraft.  The blankets provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission. KSC-04pd2076

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force St...

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician works on a blanket installed around the Swift spacecraft. The blankets provide thermal stability during the mission. S... More

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John DiBatilito, with Quality Assurance Services, is at right.  Swift is wrapped with blankets to provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission. KSC-04pd2108

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) doe...

KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John DiBatilito, with Quality Assurance Services, ... More

KENNEDY SPACE CENTER, FLA. - In the mobile service tower at Launch Pad 17-A on Cape Canaveral Air Force Station, workers attach the upper second stage to the lower first stage of the Boeing Delta II launch vehicle.  The rocket is the launch vehicle for the Swift spacecraft and its Gamma-Ray Burst Mission, now scheduled for liftoff Nov. 8.  Swift is a medium-class Explorer mission managed by NASA’s Goddard Space Flight Center in Greenbelt, Md.  It is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. KSC is responsible for Swift’s integration with the Boeing Delta II rocket and the countdown management on launch day. KSC-04pd2121

KENNEDY SPACE CENTER, FLA. - In the mobile service tower at Launch Pad...

KENNEDY SPACE CENTER, FLA. - In the mobile service tower at Launch Pad 17-A on Cape Canaveral Air Force Station, workers attach the upper second stage to the lower first stage of the Boeing Delta II launch vehi... More

KENNEDY SPACE CENTER, FLA.  --    In Building 1555 on North Vandenberg Air Force Base in California, technicians roll the AIM spacecraft back under the protective clean tent. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0791

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians roll the AIM spacecraft back under the protective clean tent. AIM, which stands for Aeronomy of I... More

KENNEDY SPACE CENTER, FLA.  --  In Building 1555 on North Vandenberg Air Force Base in California, technicians carry the separation system, at left, toward the AIM spacecraft hovering above the stand at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0779

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg A...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians carry the separation system, at left, toward the AIM spacecraft hovering above the stand at right. ... More

KENNEDY SPACE CENTER, FLA. --  The mated Pegasus XL rocket - AIM spacecraft leaves Building 1655 at Vandenberg Air Force Base in California.  The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25. KSC-07pd0975

KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM space...

KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM spacecraft leaves Building 1655 at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargaz... More

KENNEDY SPACE CENTER, FLA. --   On a runway at Vandenberg Air Force Base in California, the Orbital Sciences Stargazer L-1011 aircraft takes off at 4:26 p.m. EDT with its underbelly cargo of the Pegasus XL rocket-AIM spacecraft.  The aircraft will release the Pegasus XL rocket at a drop point over the Pacific Ocean, 100 miles offshore west-southwest of Point Sur, Calif.   AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25. Photo credit: NASA/Tim Gordon KSC-07pd0977

KENNEDY SPACE CENTER, FLA. -- On a runway at Vandenberg Air Force Ba...

KENNEDY SPACE CENTER, FLA. -- On a runway at Vandenberg Air Force Base in California, the Orbital Sciences Stargazer L-1011 aircraft takes off at 4:26 p.m. EDT with its underbelly cargo of the Pegasus XL rock... More

KENNEDY SPACE CENTER, FLA. --   On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft arrives at the upper level of the mobile service tower.  It will be moved inside and prepared for mating with the awaiting Delta II rocket.   Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller KSC-07pd2428

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral A...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft arrives at the upper level of the mobile service tower. It will be moved inside and prepared for mati... More

KENNEDY SPACE CENTER, FLA. --   In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers remove the transportation canister from around the Dawn spacecraft.  After removal of the canister, Dawn will be mated with the waiting Delta II rocket.  Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS.  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed.   Photo credit: NASA/Jim Grossmann KSC-07pd2438

KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch ...

KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers remove the transportation canister from around the Dawn spacecraft. After removal of ... More

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers observe the canister being lifted from the Swift spacecraft, which is enclosed in a protective cover. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. KSC-04pd1586

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Fo...

KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers observe the canister being lifted from the Swift spacecraft, which is enclosed in a protective cover. Swift is ... More

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers remove the final pieces of protective cover on the Swift spacecraft.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.   It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7. KSC-04pd1617

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force ...

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers remove the final pieces of protective cover on the Swift spacecraft. Swift is a first-of-its-kind, multi-wa... More

KENNEDY SPACE CENTER, FLA. -  A closeup of one of the solar cells that will be removed and replaced on the Swift spacecraft’s solar array.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky.  Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket. KSC-04pd1855

KENNEDY SPACE CENTER, FLA. - A closeup of one of the solar cells that...

KENNEDY SPACE CENTER, FLA. - A closeup of one of the solar cells that will be removed and replaced on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated t... More

KENNEDY SPACE CENTER, FLA. -  In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera,  removes one of the solar cells that will be replaced on the Swift spacecraft’s solar array.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky.  Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket. KSC-04pd1857

KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on...

KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera, removes one of the solar cells that will be replaced on t... More

VANDENBERG AIR FORCE BASE, CALIF.  --  A shipping truck carrying NASA's AIM spacecraft arrives at Building 1555 on North Vandenberg Air Force Base in California.   AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0671

VANDENBERG AIR FORCE BASE, CALIF. -- A shipping truck carrying NASA'...

VANDENBERG AIR FORCE BASE, CALIF. -- A shipping truck carrying NASA's AIM spacecraft arrives at Building 1555 on North Vandenberg Air Force Base in California. AIM is the seventh Small Explorers mission und... More

KENNEDY SPACE CENTER, FLA. --   At North Vandenberg Air Force Base in California, workers move the shipping container with NASA's AIM spacecraft inside into Building 1555. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0673

KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in ...

KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, workers move the shipping container with NASA's AIM spacecraft inside into Building 1555. AIM is the seventh Small Explorers mis... More

VANDENBERG AIR FORCE BASE, CALIF.  --   In Building 1555 at North Vandenberg Air Force Base, workers prepare the area where a partial deployment of the solar arrays on the AIM spacecraft will take place.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0686

VANDENBERG AIR FORCE BASE, CALIF. -- In Building 1555 at North Vand...

VANDENBERG AIR FORCE BASE, CALIF. -- In Building 1555 at North Vandenberg Air Force Base, workers prepare the area where a partial deployment of the solar arrays on the AIM spacecraft will take place. The A... More

VANDENBERG AIR FORCE BASE, CALIF.  -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians in bunny suits prepare for the solar array deployment on the AIM spacecraft. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0691

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of ...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians in bunny suits prepare for the solar array deployment on the AIM spacecraft. T... More

VANDENBERG AIR FORCE BASE, CALIF.  --  Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, two of the solar array panels on the AIM spacecraft are deployed for testing. Inside are the instruments that will study polar mesospheric clouds located at the edge of space. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0696

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, two of the solar array panels on the AIM spacecraft are deployed for testing. Inside are ... More

VANDENBERG AIR FORCE BASE, CALIF.  --  In a clean-room environment at North Vandenberg Air Force Base, technicians look at part of the AIM spacecraft.  AIM will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0711

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at ...

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, technicians look at part of the AIM spacecraft. AIM will fly three instruments designed to study polar mes... More

VANDENBERG AIR FORCE BASE, CALIF.  --  In a clean-room environment at North Vandenberg Air Force Base, technicians remove covers from instruments in the AIM spacecraft while solar panels are partially deployed. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0710

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at ...

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, technicians remove covers from instruments in the AIM spacecraft while solar panels are partially deployed.... More

KENNEDY SPACE CENTER, FLA.  --  At North Vandenberg Air Force Base in California, the AIM spacecraft has been rotated to horizontal prior to its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0792

KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in ...

KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, the AIM spacecraft has been rotated to horizontal prior to its move to the clean room for testing. AIM, which stands for Aeronom... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers ensure the upper transportation canister is securely attached to the lower segments.  The transportation canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  Photo credit: NASA/Jim Grossmann KSC-07pd2409

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusvi...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers ensure the upper transportation canister is securely attached to the lower segments. The transportation canister will pr... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers place another segment of the transportation canister around the upper stage booster beneath the Dawn spacecraft. The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS).  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  Photo credit: NASA/Jim Grossmann KSC-07pd2403

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusvi...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers place another segment of the transportation canister around the upper stage booster beneath the Dawn spacecraft. The cani... More

KENNEDY SPACE CENTER, FLA. -  In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera,  places a new solar cell on the Swift spacecraft’s solar array.  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky.  Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket. KSC-04pd1858

KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on...

KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera, places a new solar cell on the Swift spacecraft’s solar a... More

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician (right) watches while another completes installation of the blankets around the Swift spacecraft.  The blankets provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission. KSC-04pd2079

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force St...

KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician (right) watches while another completes installation of the blankets around the Swift spacecraft. The blankets provide ... More

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians perform blanket closeouts on the Swift spacecraft.  The blankets provide thermal stability during the mission.  Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission. KSC-04pd2082

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force ...

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians perform blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift i... More

VANDENBERG AIR FORCE BASE, CALIF.  -- At Vandenberg Air Force Base in California, a technician on the work stand (center) prepares the second stage of the Orbital Sciences Pegasus XL rocket to be mated to the first stage, at left, for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0651

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in ...

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, a technician on the work stand (center) prepares the second stage of the Orbital Sciences Pegasus XL rocket to be mated to the f... More

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket undergoes its second flight simulation.  The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0656

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in C...

VANDENBERG AIR FORCE BASE, CALIF. -- At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket undergoes its second flight simulation. The rocket is the launch vehicle for NASA's Aeron... More

VANDENBERG AIR FORCE BASE, CALIF. --  Inside a clean room at Vandenberg Air Force Base in California,  workers observe  NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft as it is lowered onto a scale. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0669

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenber...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenberg Air Force Base in California, workers observe NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft as it is lowered onto a scale... More

VANDENBERG AIR FORCE BASE, CALIF.  --   Inside a clean room at Vandenberg Air Force Base in California, workers remove the shipping container from around NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0665

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenb...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside a clean room at Vandenberg Air Force Base in California, workers remove the shipping container from around NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacec... More

VANDENBERG AIR FORCE BASE, CALIF.  --  In Building 1555 at North Vandenberg Air Force Base, workers lower the AIM spacecraft onto a moveable base.  AIM will be moved into an area where a partial deployment of the solar arrays on the spacecraft will take place.The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0689

VANDENBERG AIR FORCE BASE, CALIF. -- In Building 1555 at North Vande...

VANDENBERG AIR FORCE BASE, CALIF. -- In Building 1555 at North Vandenberg Air Force Base, workers lower the AIM spacecraft onto a moveable base. AIM will be moved into an area where a partial deployment of t... More

VANDENBERG AIR FORCE BASE, CALIF.  --  Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, two of the solar array panels on the AIM spacecraft are deployed for testing. Inside are the instruments that will study polar mesospheric clouds located at the edge of space. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0697

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of...

VANDENBERG AIR FORCE BASE, CALIF. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, two of the solar array panels on the AIM spacecraft are deployed for testing. Inside are ... More

VANDENBERG AIR FORCE BASE, CALIF.  --   In a clean-room environment at North Vandenberg Air Force Base, a technician begins the illumination testing of the AIM spacecraft at left.  The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0703

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at...

VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, a technician begins the illumination testing of the AIM spacecraft at left. The AIM spacecraft will fly t... More

KENNEDY SPACE CENTER, FLA.  --  In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0786

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg A...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of ... More

KENNEDY SPACE CENTER, FLA.  --  In Building 1555 on North Vandenberg Air Force Base in California, technicians move a mobile stand toward the AIM spacecraft suspended via a crane at left. . AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted.  Launch is scheduled for April 25. KSC-07pd0788

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg A...

KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians move a mobile stand toward the AIM spacecraft suspended via a crane at left. . AIM, which stands fo... More

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right.  AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change.  Launch from the Pegasus XL rocket is scheduled for April 25. KSC-07pd0993

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in Californ...

KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right. AIM, which stands for Aeronomy of ... More

KENNEDY SPACE CENTER, FLA. --  The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California.  The launch vehicle will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch.  AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation.  The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25. KSC-07pd0973

KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM space...

KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California. The launch vehicle will be transferred to a ... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers place the lower segments of the transportation canister around the upper stage booster beneath the Dawn spacecraft.  The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  Photo credit: NASA/Jim Grossmann KSC-07pd2402

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusvi...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers place the lower segments of the transportation canister around the upper stage booster beneath the Dawn spacecraft. The ... More

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers watch as the upper transportation canister is lowered over the Dawn spacecraft.  The canister will be attached to the bottom segments already in place.  The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS).  During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies.  In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS.  Photo credit: NASA/Jim Grossmann KSC-07pd2407

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusvi...

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers watch as the upper transportation canister is lowered over the Dawn spacecraft. The canister will be attached to the bot... More

KENNEDY SPACE CENTER, FLA. - - The Swift spacecraft arrives at Hangar AE at Cape Canaveral Air Force Station (CCAFS).  Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. KSC-04pd1585

KENNEDY SPACE CENTER, FLA. - - The Swift spacecraft arrives at Hangar ...

KENNEDY SPACE CENTER, FLA. - - The Swift spacecraft arrives at Hangar AE at Cape Canaveral Air Force Station (CCAFS). Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-... More

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers look over the Swift spacecraft while removing its protective cover. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands.  Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.   It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7. KSC-04pd1614

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force ...

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers look over the Swift spacecraft while removing its protective cover. Swift is a first-of-its-kind, multi-wave... More

Previous

of 2

Next