The World's Largest Public Domain Media Search Engine
Topic

nucleus

319 media by topicpage 1 of 4
View from the Nucleus Hotel, looking towards Rincon Hill, San Francisco
Nucleus Hotel, corner 3rd and Market Streets, San Francisco, California

Nucleus Hotel, corner 3rd and Market Streets, San Francisco, Californi...

The Library holds only one photo from a pair published as a stereographic view. Gems of California scenery, no. 556. LOT subdivision subject: San Francisco Commercial Bldgs (Businesses, Hotels, etc.). This reco... More

View from the Nucleus Hotel, corner Market and Third streets, looking Northwest, San Francisco
View from the Nucleus Hotel, corner Market and Third Streets, looking West, San Francisco

View from the Nucleus Hotel, corner Market and Third Streets, looking ...

The Library holds only one photo from a pair published as a stereographic view. Gems of California scenery, no. 558. LOT subdivision subject: San Francisco General Views. This record contains unverified old dat... More

View from the Nucleus hotel, Corner Market & 3rd Streets, looking north, San Francisco
Ordinary seaman Jackson becomes a D.E.M.S seaman gunner. After a four months' course at a naval training establishment, ordinary seaman Jackson became a seaman gunner on board a merchant ship, a member of the Navy's Defensively Equipped Merchant Ships Service. D.E.M.S gunners and gunners of the Maritime Regiments, soldiers who now serve beside them, have destroyed or damaged 228 enemy aircraft since the beginning of the war. Equipped with a great variety of new weapons and anti-aircraft devices, the D.E.M.S Service has grown from a nucleus of 1,300 men to nearly 20,000 trained seamen gunners and gunslayers. Soldiers originally recruited from the Army as a temporary augmentation, later took the name Maritime Regiments, thus reviving and carrying on the 17th century regiment of that name. Jackson, now a D.E.M.S seaman gunner arrives to join his first ship
Camp Carson, Colorado. Nucleus of the 122 Infantry Greek battalion at the conclusion of the battalion commander's talk and just before the presentation of the company guidons at the 122's ceremony. The regimental band of the 353 Infantry is in the foreground
Production. A-31 ("Vengeance") dive bombers. She'd pass for a choir singer. A Vultee woman employee shown making a labor distribution check. She is standing under the engine nucleus of the "Vengeance" dive bomber manufcatured at Vultee's Nashville Division. The "Vengeance" (A-31) was originally designed for the French. It was later adopted by the RAF (Royal Air Force) and still later by the U.S. Army Air Forces. It is a single-engine, low-wing plane, carrying a crew of two men and having six machine guns of varying calibers
An e12 nucleus is scattered by an argon nucleus. Photo taken 3/13/1952. 60"-442.  Principal Investigator/Project: Crocker Lab/60-inch

An e12 nucleus is scattered by an argon nucleus. Photo taken 3/13/1952...

Photographs Documenting Scientists, Special Events, and Nuclear Research Facilities, Instruments, and Projects at the Berkeley Lab

An e12 nucleus collides with an oxygen (O16) nucleus contained in the water vapor. Photo taken 3/13/1952. 60"-441.  Principal Investigator/Project: Crocker Lab/60-inch

An e12 nucleus collides with an oxygen (O16) nucleus contained in the ...

Photographs Documenting Scientists, Special Events, and Nuclear Research Facilities, Instruments, and Projects at the Berkeley Lab

An e12 nucleus is scattered by collision with an a40 nucleus. Photo taken 3/13/1952. 60"-440.  Principal Investigator/Project: Crocker Lab/60-inch

An e12 nucleus is scattered by collision with an a40 nucleus. Photo ta...

Photographs Documenting Scientists, Special Events, and Nuclear Research Facilities, Instruments, and Projects at the Berkeley Lab

Group Shot - Nucleus - 1960 Flight Operations Division - Houston, TX

Group Shot - Nucleus - 1960 Flight Operations Division - Houston, TX

Group shot of the nucleus of the 1960 Flight Operations Division for the Mercury Program. Image taken at the Houston Petroleum Center (HPC) in Houston, TX, prior to their move to the Manned Spacecraft Center ... More

Two views of Halley's Comet taken in the far-ultraviolet and visible (insert) spectral regions. The ultraviolet image shows an extended hydrogen cloud surrounding the cometary nucleus. The visible photograph shows sunlight scattering from the dust tail. Ultraviolet photo - Naval Research Laboratory. Visible light photo - R. N. Bolster, Hopewell Observatory

Two views of Halley's Comet taken in the far-ultraviolet and visible (...

The original finding aid described this photograph as: Country: Unknown Scene Camera Operator: Nrl/Robert N. Bolster Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

A far ultraviolet image of Comet Halley, taken by an electronic camera aboard a suborbital rocket 300 kilometers above Earth, showing a hydrogen cloud surrounding the comet and extending tens of millions of kilometers from the nucleus. Scientists at the Naval Research Laboratory and the University of Texas launched the rockets to obtain images of the comet at a variety of ultraviolet wavelengths

A far ultraviolet image of Comet Halley, taken by an electronic camera...

The original finding aid described this photograph as: Country: Space Scene Camera Operator: Naval Research Laboratory Release Status: Released to Public Combined Military Service Digital Photographic Files

Comet Halley, JPL/NASA images

Comet Halley, JPL/NASA images

In 1986, the European spacecraft Giotto became one of the first spacecraft ever to encounter and photograph the nucleus of a comet, passing and imaging Halley nucleus as it receded from the sun. NASA/ESA/Giotto Project

A port side view of the guided missile cruiser USS NORMANDY (CG-60), homeported in Staten Island, NY, deployed to the Adriatic Sea. The NORMANDY is capable of conducting anti-air, anti-submarine, and anti-surface warfare simultaneously. An Aegis Combat System forms the nucleus of this TICONDEROGA class cruiser's Combat Information Center.(Exact date unknown)

A port side view of the guided missile cruiser USS NORMANDY (CG-60), h...

The original finding aid described this photograph as: Subject Operation/Series: SHARP GUARD Country: Adriatic Sea Scene Camera Operator: PH1 David W. Hanselman Release Status: Released to Public Combined M... More

Comet (Artwork by Don Davis) Shoemaker Levy 9 impact on Jupiter (Artwork nucleus chunk view) ARC-1994-AC94-0182

Comet (Artwork by Don Davis) Shoemaker Levy 9 impact on Jupiter (Artwo...

Comet (Artwork by Don Davis) Shoemaker Levy 9 impact on Jupiter (Artwork nucleus chunk view)

In the Payload Hazardous Service Facility, a worker looks over the re-entry capsule on top of the Stardust spacecraft. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1638

In the Payload Hazardous Service Facility, a worker looks over the re-...

In the Payload Hazardous Service Facility, a worker looks over the re-entry capsule on top of the Stardust spacecraft. The spacecraft will undergo installation and testing of the solar arrays, plus final instal... More

The Stardust spacecraft sits in the Payload Hazardous Service Facility waiting to undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. At the top is the re-entry capsule. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1640

The Stardust spacecraft sits in the Payload Hazardous Service Facility...

The Stardust spacecraft sits in the Payload Hazardous Service Facility waiting to undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by ... More

In the Payload Hazardous Service Facility, workers check the placement of the Stardust spacecraft's workstand in the high bay. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 20004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1635

In the Payload Hazardous Service Facility, workers check the placement...

In the Payload Hazardous Service Facility, workers check the placement of the Stardust spacecraft's workstand in the high bay. The spacecraft will undergo installation and testing of the solar arrays, plus fina... More

In the Payload Hazardous Service Facility, a worker prepares the Stardust spacecraft for its transfer to . Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. . The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by in January 2006 KSC-98pc1632

In the Payload Hazardous Service Facility, a worker prepares the Stard...

In the Payload Hazardous Service Facility, a worker prepares the Stardust spacecraft for its transfer to . Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and N... More

In the Payload Hazardous Service Facility, workers lift the cover that protected the Stardust spacecraft during its journey. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by in January 2006 KSC-98pc1630

In the Payload Hazardous Service Facility, workers lift the cover that...

In the Payload Hazardous Service Facility, workers lift the cover that protected the Stardust spacecraft during its journey. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Labo... More

In the Payload Hazardous Service Facility, workers begin checking the Stardust spacecraft after removing its protective cover. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1637

In the Payload Hazardous Service Facility, workers begin checking the ...

In the Payload Hazardous Service Facility, workers begin checking the Stardust spacecraft after removing its protective cover. The spacecraft will undergo installation and testing of the solar arrays, plus fina... More

In the Payload Hazardous Service Facility, workers begin removing the protective plastic covering of the Stardust spacecraft. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 20004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1636

In the Payload Hazardous Service Facility, workers begin removing the ...

In the Payload Hazardous Service Facility, workers begin removing the protective plastic covering of the Stardust spacecraft. The spacecraft will undergo installation and testing of the solar arrays, plus final... More

The Stardust spacecraft sits in the Payload Hazardous Service Facility waiting to undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. At the top is the re-entry capsule. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1639

The Stardust spacecraft sits in the Payload Hazardous Service Facility...

The Stardust spacecraft sits in the Payload Hazardous Service Facility waiting to undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by ... More

In the Payload Hazardous Service Facility, workers lower the Stardust spacecraft onto a workstand. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1633

In the Payload Hazardous Service Facility, workers lower the Stardust ...

In the Payload Hazardous Service Facility, workers lower the Stardust spacecraft onto a workstand. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing o... More

After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by in January 2006 KSC-98pc1621

After arrival at the Shuttle Landing Facility in the early morning hou...

After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the... More

In the Payload Hazardous Service Facility, workers oversee the arrival of the crated Stardust spacecraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by in January 2006 KSC-98pc1624

In the Payload Hazardous Service Facility, workers oversee the arrival...

In the Payload Hazardous Service Facility, workers oversee the arrival of the crated Stardust spacecraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NA... More

At the Shuttle Landing Facility, workers observe the loading of the crated Stardust spacecraft onto a trailer for transporting to the Payload Hazardous Service Facility. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 20004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by in January 2006 KSC-98pc1623

At the Shuttle Landing Facility, workers observe the loading of the cr...

At the Shuttle Landing Facility, workers observe the loading of the crated Stardust spacecraft onto a trailer for transporting to the Payload Hazardous Service Facility. Built by Lockheed Martin Astronautics ne... More

In the Payload Hazardous Service Facility, workers move the Stardust spacecraft on its workstand from the air lock to the high bay. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1634

In the Payload Hazardous Service Facility, workers move the Stardust s...

In the Payload Hazardous Service Facility, workers move the Stardust spacecraft on its workstand from the air lock to the high bay. The spacecraft will undergo installation and testing of the solar arrays, plus... More

At the Shuttle Landing Facility, workers unload the crated Stardust spacecraft from the airplane before transporting to the Payload Hazardous Service Facility. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by in January 2006 KSC-98pc1622

At the Shuttle Landing Facility, workers unload the crated Stardust sp...

At the Shuttle Landing Facility, workers unload the crated Stardust spacecraft from the airplane before transporting to the Payload Hazardous Service Facility. Built by Lockheed Martin Astronautics near Denver,... More

In the Payload Hazardous Servicing Facility, workers remove the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule (seen at the top of the spacecraft in this photo) to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1727

In the Payload Hazardous Servicing Facility, workers remove the Stardu...

In the Payload Hazardous Servicing Facility, workers remove the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucle... More

In the Payload Hazardous Servicing Facility, workers begin removing the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1724

In the Payload Hazardous Servicing Facility, workers begin removing th...

In the Payload Hazardous Servicing Facility, workers begin removing the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off t... More

In the Payload Hazardous Servicing Facility, workers work at removing the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1726

In the Payload Hazardous Servicing Facility, workers work at removing ...

In the Payload Hazardous Servicing Facility, workers work at removing the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off... More

In the Payload Hazardous Servicing Facility, workers carry one of the Stardust solar panels removed for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1725

In the Payload Hazardous Servicing Facility, workers carry one of the ...

In the Payload Hazardous Servicing Facility, workers carry one of the Stardust solar panels removed for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying... More

In the Payload Hazardous Servicing Facility, workers place one of the Stardust solar panels on a stand. The panels are being removed for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1728

In the Payload Hazardous Servicing Facility, workers place one of the ...

In the Payload Hazardous Servicing Facility, workers place one of the Stardust solar panels on a stand. The panels are being removed for testing. The spacecraft Stardust will use a unique medium called aerogel ... More

In the Payload Hazardous Servicing Facility, workers remove one of the Stardust solar panels for testing. The spacecraft Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule (seen on top, next to the solar panel) to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1729

In the Payload Hazardous Servicing Facility, workers remove one of the...

In the Payload Hazardous Servicing Facility, workers remove one of the Stardust solar panels for testing. The spacecraft Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaver... More

In the Payload Hazardous Servicing Facility, workers get ready to install a science panel on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006 KSC-98pc1834

In the Payload Hazardous Servicing Facility, workers get ready to inst...

In the Payload Hazardous Servicing Facility, workers get ready to install a science panel on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral A... More

In the Payload Hazardous Servicing Facility, workers adjust a science panel they are installing on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006 KSC-98pc1836

In the Payload Hazardous Servicing Facility, workers adjust a science ...

In the Payload Hazardous Servicing Facility, workers adjust a science panel they are installing on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canav... More

In the Payload Hazardous Servicing Facility, workers install a science panel on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006 KSC-98pc1835

In the Payload Hazardous Servicing Facility, workers install a science...

In the Payload Hazardous Servicing Facility, workers install a science panel on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, o... More

In the Payload Hazardous Servicing Facility, workers get ready to install the Sample Return Capsule (SRC) and -X spacecraft panel on the Stardust spacecraft . Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1865

In the Payload Hazardous Servicing Facility, workers get ready to inst...

In the Payload Hazardous Servicing Facility, workers get ready to install the Sample Return Capsule (SRC) and -X spacecraft panel on the Stardust spacecraft . Stardust will use a unique medium called aerogel to... More

In the Payload Hazardous Servicing Facility, the Stardust spacecraft is ready for the sample return capsule to be attached. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the re-entry capsule to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1864

In the Payload Hazardous Servicing Facility, the Stardust spacecraft i...

In the Payload Hazardous Servicing Facility, the Stardust spacecraft is ready for the sample return capsule to be attached. Stardust will use a unique medium called aerogel to capture comet particles flying off... More

In the Payload Hazardous Servicing Facility, workers inspect the aerogel grid from the Stardust Sample Return Capsule (SRC) to the right of the worker. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1871

In the Payload Hazardous Servicing Facility, workers inspect the aerog...

In the Payload Hazardous Servicing Facility, workers inspect the aerogel grid from the Stardust Sample Return Capsule (SRC) to the right of the worker. Stardust will use a unique medium called aerogel to captur... More

In the Payload Hazardous Servicing Facility, workers deploy an aerogel grid from the Stardust Sample Return Capsule (SRC) in the Class 100 Glove Box. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1870

In the Payload Hazardous Servicing Facility, workers deploy an aerogel...

In the Payload Hazardous Servicing Facility, workers deploy an aerogel grid from the Stardust Sample Return Capsule (SRC) in the Class 100 Glove Box. Stardust will use a unique medium called aerogel to capture ... More

In the Payload Hazardous Servicing Facility, the aerogel grid is fully deployed from the Stardust Sample Return Capsule (SRC) for final closeout. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1872

In the Payload Hazardous Servicing Facility, the aerogel grid is fully...

In the Payload Hazardous Servicing Facility, the aerogel grid is fully deployed from the Stardust Sample Return Capsule (SRC) for final closeout. Stardust will use a unique medium called aerogel to capture come... More

In the Payload Hazardous Servicing Facility, workers prepare to open the Stardust Sample Return Capsule (SRC) residing in a Class 100 glove box. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1869

In the Payload Hazardous Servicing Facility, workers prepare to open t...

In the Payload Hazardous Servicing Facility, workers prepare to open the Stardust Sample Return Capsule (SRC) residing in a Class 100 glove box. Stardust will use a unique medium called aerogel to capture comet... More

In the Payload Hazardous Servicing Facility, workers oversee closeout operations of the Stardust Sample Return Capsule (SRC) and -X spacecraft panel with the spacecraft bus. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1866

In the Payload Hazardous Servicing Facility, workers oversee closeout ...

In the Payload Hazardous Servicing Facility, workers oversee closeout operations of the Stardust Sample Return Capsule (SRC) and -X spacecraft panel with the spacecraft bus. Stardust will use a unique medium ca... More

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pat Wedeman (right), with Lockheed Martin Astronautics, check the insulation on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1895

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pa...

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pat Wedeman (right), with Lockheed Martin Astronautics, check the insulation on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subje... More

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pat Wedeman (right) , with Lockheed Martin Astronautics, insulate the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1893

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pa...

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pat Wedeman (right) , with Lockheed Martin Astronautics, insulate the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.h... More

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pat Wedeman (right), with Lockheed Martin Astronautics, check the insulation material on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1894

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pa...

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Pat Wedeman (right), with Lockheed Martin Astronautics, check the insulation material on the <a href="http://www-pao.ksc.nasa.gov/kscpao/capti... More

In the Payload Hazardous Servicing Facility, Randy Scott, with Lockheed Martin Astronautics, looks over the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft after closeout. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1897

In the Payload Hazardous Servicing Facility, Randy Scott, with Lockhee...

In the Payload Hazardous Servicing Facility, Randy Scott, with Lockheed Martin Astronautics, looks over the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft af... More

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Linda Townsend (right), with Lockheed Martin Astronautics, make a final check of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1896

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Li...

In the Payload Hazardous Servicing Facility, Randy Scott (left) and Linda Townsend (right), with Lockheed Martin Astronautics, make a final check of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subj... More

In the Payload Hazardous Servicing Facility, Randy Scott, with Lockheed Martin Astronautics, checks insulation material on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1892

In the Payload Hazardous Servicing Facility, Randy Scott, with Lockhee...

In the Payload Hazardous Servicing Facility, Randy Scott, with Lockheed Martin Astronautics, checks insulation material on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardus... More

In the Payload Hazardous Servicing Facility, closeout of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft is complete. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the SRC to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999 KSC-98pc1891

In the Payload Hazardous Servicing Facility, closeout of the <a href="...

In the Payload Hazardous Servicing Facility, closeout of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust</a> spacecraft is complete. Stardust will use a unique medium ca... More

The first stage of a Boeing Delta II rocket is guided to its vertical position on the tower at Launch Complex 17, Cape Canaveral Air Station. The rocket will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, it will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc10

The first stage of a Boeing Delta II rocket is guided to its vertical ...

The first stage of a Boeing Delta II rocket is guided to its vertical position on the tower at Launch Complex 17, Cape Canaveral Air Station. The rocket will carry the Stardust spacecraft into space for a close... More

The first stage of a Boeing Delta II rocket is in position on the mobile tower (at right) at Launch Complex 17. At left is the launch tower. The rocket will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, it will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc12

The first stage of a Boeing Delta II rocket is in position on the mobi...

The first stage of a Boeing Delta II rocket is in position on the mobile tower (at right) at Launch Complex 17. At left is the launch tower. The rocket will carry the Stardust spacecraft into space for a close ... More

The first stage of a Boeing Delta II rocket is lifted to its vertical position on the tower at Launch Complex 17, Cape Canaveral Air Station. The rocket will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, it will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc09

The first stage of a Boeing Delta II rocket is lifted to its vertical ...

The first stage of a Boeing Delta II rocket is lifted to its vertical position on the tower at Launch Complex 17, Cape Canaveral Air Station. The rocket will carry the Stardust spacecraft into space for a close... More

The first stage of a Boeing Delta II rocket is raised off a truck bed before being lifted into place on the tower at Launch Complex 17, Cape Canaveral Air Station. The rocket will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, it will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc08

The first stage of a Boeing Delta II rocket is raised off a truck bed ...

The first stage of a Boeing Delta II rocket is raised off a truck bed before being lifted into place on the tower at Launch Complex 17, Cape Canaveral Air Station. The rocket will carry the Stardust spacecraft ... More

Workers at Cape Canaveral Air Station help guide the first stage of a Boeing Delta II rocket to its vertical position on the tower at Launch Complex 17. The rocket will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, it will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc11

Workers at Cape Canaveral Air Station help guide the first stage of a ...

Workers at Cape Canaveral Air Station help guide the first stage of a Boeing Delta II rocket to its vertical position on the tower at Launch Complex 17. The rocket will carry the Stardust spacecraft into space ... More

A solid rocket booster is lifted off a transport vehicle for its transfer to the mobile launch tower at Pad 17A, Cape Canaveral Air Station. It will be mated with a Boeing Delta II rocket that will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc23

A solid rocket booster is lifted off a transport vehicle for its trans...

A solid rocket booster is lifted off a transport vehicle for its transfer to the mobile launch tower at Pad 17A, Cape Canaveral Air Station. It will be mated with a Boeing Delta II rocket that will carry the St... More

A solid rocket booster is raised to a vertical position before lifting it up the mobile launch tower at Pad 17A, Cape Canaveral Air Station. It will be mated with a Boeing Delta II rocket that will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc24

A solid rocket booster is raised to a vertical position before lifting...

A solid rocket booster is raised to a vertical position before lifting it up the mobile launch tower at Pad 17A, Cape Canaveral Air Station. It will be mated with a Boeing Delta II rocket that will carry the St... More

A solid rocket booster is lifted up the mobile launch tower at Pad 17A, Cape Canaveral Air Station. It will be mated with a Boeing Delta II rocket that will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc25

A solid rocket booster is lifted up the mobile launch tower at Pad 17A...

A solid rocket booster is lifted up the mobile launch tower at Pad 17A, Cape Canaveral Air Station. It will be mated with a Boeing Delta II rocket that will carry the Stardust spacecraft into space for a close ... More

At Pad 17A, Cape Canaveral Air Station, a Boeing Delta II rocket waits with its four solid rocket boosters for final preparations to launch the Stardust satellite on Feb. 6, 1999. The rocket will carry Stardust into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc36

At Pad 17A, Cape Canaveral Air Station, a Boeing Delta II rocket waits...

At Pad 17A, Cape Canaveral Air Station, a Boeing Delta II rocket waits with its four solid rocket boosters for final preparations to launch the Stardust satellite on Feb. 6, 1999. The rocket will carry Stardust... More

A fourth and final Solid Rocket Booster arrives at Pad 17A, Cape Canaveral Air Station to be mated with a Boeing Delta II rocket. The rocket will carry the Stardust satellite into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc31

A fourth and final Solid Rocket Booster arrives at Pad 17A, Cape Canav...

A fourth and final Solid Rocket Booster arrives at Pad 17A, Cape Canaveral Air Station to be mated with a Boeing Delta II rocket. The rocket will carry the Stardust satellite into space for a close encounter wi... More

A fourth and final Solid Rocket Booster, to be mated with a Boeing Delta II rocket, starts its lift up the tower at Pad 17A, Cape Canaveral Air Station. The rocket will carry the Stardust satellite into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc32

A fourth and final Solid Rocket Booster, to be mated with a Boeing Del...

A fourth and final Solid Rocket Booster, to be mated with a Boeing Delta II rocket, starts its lift up the tower at Pad 17A, Cape Canaveral Air Station. The rocket will carry the Stardust satellite into space f... More

A Boeing Delta II rocket sits on Launch Pad 17A (left), Cape Canaveral Air Station, before mating with its final Solid Rocket Booster, in the tower at right. In the background is Pad 17B with its two launch tower components. The Delta II rocket will carry the Stardust satellite into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc33

A Boeing Delta II rocket sits on Launch Pad 17A (left), Cape Canaveral...

A Boeing Delta II rocket sits on Launch Pad 17A (left), Cape Canaveral Air Station, before mating with its final Solid Rocket Booster, in the tower at right. In the background is Pad 17B with its two launch tow... More

At Pad 17A, Cape Canaveral Air Station, workers keep watch on the placement of the fourth and final solid rocket booster (SRB) being mated with the Boeing Delta II rocket. The rocket will be aided by four SRBs to carry the Stardust satellite into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc35

At Pad 17A, Cape Canaveral Air Station, workers keep watch on the plac...

At Pad 17A, Cape Canaveral Air Station, workers keep watch on the placement of the fourth and final solid rocket booster (SRB) being mated with the Boeing Delta II rocket. The rocket will be aided by four SRBs ... More

At Pad 17A, Cape Canaveral Air Station, a fourth and final solid rocket booster (SRB) (right) is moved from the mobile tower by a crane before mating with the Delta II rocket (left). The rocket will be aided by four SRBs to carry the Stardust satellite into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999 KSC-99pc34

At Pad 17A, Cape Canaveral Air Station, a fourth and final solid rocke...

At Pad 17A, Cape Canaveral Air Station, a fourth and final solid rocket booster (SRB) (right) is moved from the mobile tower by a crane before mating with the Delta II rocket (left). The rocket will be aided by... More

In the Payload Hazardous Servicing Facility, the fully extended solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a>spacecraft undergo lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006 KSC-99pc42

In the Payload Hazardous Servicing Facility, the fully extended solar ...

In the Payload Hazardous Servicing Facility, the fully extended solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a>spacecraft undergo lighting tests. St... More

In the Payload Hazardous Servicing Facility, a worker (left) conducts lighting tests on the fully extended solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a>spacecraft. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006 KSC-99pc41

In the Payload Hazardous Servicing Facility, a worker (left) conducts ...

In the Payload Hazardous Servicing Facility, a worker (left) conducts lighting tests on the fully extended solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardu... More

Workers in the Payload Hazardous Servicing Facility deploy a solar panel on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft before performing lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006 KSC-99pc38

Workers in the Payload Hazardous Servicing Facility deploy a solar pan...

Workers in the Payload Hazardous Servicing Facility deploy a solar panel on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft before performing lighting te... More

Workers in the Payload Hazardous Servicing Facility watch as the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft is lowered before deploying panels for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (seen on top of the spacecraft) to be jettisoned as it swings by Earth in January 2006 KSC-99pc39

Workers in the Payload Hazardous Servicing Facility watch as the <a hr...

Workers in the Payload Hazardous Servicing Facility watch as the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft is lowered before deploying panels for light... More

Bright white light (left) and blue light (upper right) appear on the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft during lighting tests in the Payload Hazardous Servicing Facility. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006 KSC-99pc45

Bright white light (left) and blue light (upper right) appear on the s...

Bright white light (left) and blue light (upper right) appear on the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft during lighting test... More

In the Payload Hazardous Servicing Facility, workers adjust the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a>spacecraft before performing lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006 KSC-99pc43

In the Payload Hazardous Servicing Facility, workers adjust the solar ...

In the Payload Hazardous Servicing Facility, workers adjust the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a>spacecraft before performing lighting... More

In the Payload Hazardous Servicing Facility, a worker looks over the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft before it undergoes lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (its white cap is seen on the left) to be jettisoned as it swings by Earth in January 2006 KSC-99pc44

In the Payload Hazardous Servicing Facility, a worker looks over the s...

In the Payload Hazardous Servicing Facility, a worker looks over the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft before it undergoes ... More

Workers in the Payload Hazardous Servicing Facility check solar panels on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft before performing lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (its white cap is seen on the left) to be jettisoned as it swings by Earth in January 2006 KSC-99pc37

Workers in the Payload Hazardous Servicing Facility check solar panels...

Workers in the Payload Hazardous Servicing Facility check solar panels on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft before performing lighting test... More

In the Payload Hazardous Servicing Facility, workers look over the solar panels on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft that are deployed for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006 KSC-99pc49

In the Payload Hazardous Servicing Facility, workers look over the sol...

In the Payload Hazardous Servicing Facility, workers look over the solar panels on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft that are deployed for ... More

In the Payload Hazardous Servicing Facility, workers raise the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft from its workstand to move it to another area for lighting tests on the solar panels. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006 KSC-99pc47

In the Payload Hazardous Servicing Facility, workers raise the <a href...

In the Payload Hazardous Servicing Facility, workers raise the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft from its workstand to move it to another area ... More

In the Payload Hazardous Servicing Facility, workers get ready to rotate the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft before deploying the solar panels (at left and right) for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006 KSC-99pc48

In the Payload Hazardous Servicing Facility, workers get ready to rota...

In the Payload Hazardous Servicing Facility, workers get ready to rotate the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft before deploying the solar panel... More

Workers in the Payload Hazardous Servicing Facility watch as the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft is rotated and lowered before deploying the solar panels for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (seen on top of the spacecraft) to be jettisoned as it swings by Earth in January 2006 KSC-99pc40

Workers in the Payload Hazardous Servicing Facility watch as the <a hr...

Workers in the Payload Hazardous Servicing Facility watch as the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a> spacecraft is rotated and lowered before deploying the ... More

In the Payload Hazardous Servicing Facility, workers at left check instruments during a lighting test on the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Stardust</a>spacecraft. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (its white cap is seen on the near end of the spacecraft) to be jettisoned as it swings by Earth in January 2006 KSC-99pc46

In the Payload Hazardous Servicing Facility, workers at left check ins...

In the Payload Hazardous Servicing Facility, workers at left check instruments during a lighting test on the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm"> Star... More

The second stage of a Boeing Delta II rocket begins its move up the tower at Pad 17A, Cape Canaveral Air Station, for mating with the first stage. The rocket is targeted for launch on Feb. 6, carrying the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust </a> spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc57

The second stage of a Boeing Delta II rocket begins its move up the to...

The second stage of a Boeing Delta II rocket begins its move up the tower at Pad 17A, Cape Canaveral Air Station, for mating with the first stage. The rocket is targeted for launch on Feb. 6, carrying the <a hr... More

Workers at the top of the tower at Pad 17A, Cape Canaveral Air Station, watch as the second stage of a Boeing Delta II rocket moves toward the opening through which it will be mated with the first stage. The rocket is targeted for launch on Feb. 6, carrying the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust </a> spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc59

Workers at the top of the tower at Pad 17A, Cape Canaveral Air Station...

Workers at the top of the tower at Pad 17A, Cape Canaveral Air Station, watch as the second stage of a Boeing Delta II rocket moves toward the opening through which it will be mated with the first stage. The ro... More

Workers at Pad 17A, Cape Canaveral Air Station, ensure the successful mating of the second stage of a Boeing Delta II rocket with the first stage below it. The rocket is targeted for launch on Feb. 6, carrying the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust </a> spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc61

Workers at Pad 17A, Cape Canaveral Air Station, ensure the successful ...

Workers at Pad 17A, Cape Canaveral Air Station, ensure the successful mating of the second stage of a Boeing Delta II rocket with the first stage below it. The rocket is targeted for launch on Feb. 6, carrying ... More

At Pad 17A, Cape Canaveral Air Station, a worker helps guide the second stage of a Boeing Delta II rocket as it is lowered for mating with the first stage. The rocket is targeted for launch on Feb. 6, carrying the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust </a> spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc60

At Pad 17A, Cape Canaveral Air Station, a worker helps guide the secon...

At Pad 17A, Cape Canaveral Air Station, a worker helps guide the second stage of a Boeing Delta II rocket as it is lowered for mating with the first stage. The rocket is targeted for launch on Feb. 6, carrying ... More

At Pad 17A, Cape Canaveral Air Station, the second stage of a Boeing Delta II rocket arrives for mating with the first stage. The rocket is targeted for launch on Feb. 6, carrying the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust </a> spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc56

At Pad 17A, Cape Canaveral Air Station, the second stage of a Boeing D...

At Pad 17A, Cape Canaveral Air Station, the second stage of a Boeing Delta II rocket arrives for mating with the first stage. The rocket is targeted for launch on Feb. 6, carrying the <a href="http://www-pao.ks... More

The second stage of a Boeing Delta II rocket arrives at the top of the tower at Pad 17A, Cape Canaveral Air Station for mating with the first stage. The rocket is targeted for launch on Feb. 6, carrying the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/stardust.htm">Stardust </a>spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc58

The second stage of a Boeing Delta II rocket arrives at the top of the...

The second stage of a Boeing Delta II rocket arrives at the top of the tower at Pad 17A, Cape Canaveral Air Station for mating with the first stage. The rocket is targeted for launch on Feb. 6, carrying the <a ... More

The cover is removed from the Stardust spacecraft in the Payload Hazardous Servicing Facility prior to a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0093

The cover is removed from the Stardust spacecraft in the Payload Hazar...

The cover is removed from the Stardust spacecraft in the Payload Hazardous Servicing Facility prior to a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch... More

In the Payload Hazardous Servicing Facility, the spacecraft Stardust is on display for a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0094

In the Payload Hazardous Servicing Facility, the spacecraft Stardust i...

In the Payload Hazardous Servicing Facility, the spacecraft Stardust is on display for a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape ... More

In the Payload Hazardous Servicing Facility, Casey McClellan (left) and Denise Kato (right), with Lockheed Martin, prepare the spacecraft Stardust for a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0097

In the Payload Hazardous Servicing Facility, Casey McClellan (left) an...

In the Payload Hazardous Servicing Facility, Casey McClellan (left) and Denise Kato (right), with Lockheed Martin, prepare the spacecraft Stardust for a media presentation. Stardust is targeted for launch on Fe... More

In the Payload Hazardous Servicing Facility, Casey McClellan (right), with Lockheed Martin, and an unidentified worker look over the spacecraft Stardust before a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0095

In the Payload Hazardous Servicing Facility, Casey McClellan (right), ...

In the Payload Hazardous Servicing Facility, Casey McClellan (right), with Lockheed Martin, and an unidentified worker look over the spacecraft Stardust before a media presentation. Stardust is targeted for lau... More