The World's Largest Public Domain Media Search Engine

insights

public
181 media by topicpage 1 of 2
At Launch Pad 17-A, Cape Canaveral Air Station, workers check the mounting on a video camera on the second stage of a Boeing Delta II rocket that will launch the Stardust spacecraft on Feb. 6. Looking toward Earth, the camera will record the liftoff and separation of the first stage. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0119

At Launch Pad 17-A, Cape Canaveral Air Station, workers check the moun...

At Launch Pad 17-A, Cape Canaveral Air Station, workers check the mounting on a video camera on the second stage of a Boeing Delta II rocket that will launch the Stardust spacecraft on Feb. 6. Looking toward Ea... More

In the Payload Hazardous Servicing Facility, workers guide a protective canister as it is lowered over the Stardust spacecraft. Once it is enclosed, Stardust will be moved to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. Stardust is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0122

In the Payload Hazardous Servicing Facility, workers guide a protectiv...

In the Payload Hazardous Servicing Facility, workers guide a protective canister as it is lowered over the Stardust spacecraft. Once it is enclosed, Stardust will be moved to Launch Pad 17-A, Cape Canaveral Air... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is offloaded from a U.S. Air Force C-17 transport at Vandenberg Air Force Base in California. The aircraft traveled from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.        Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing KSC-2011-2628

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is offloaded from a U.S. Air Force C-17 transport at Vandenberg Air Force Base in California. The aircraft traveled from Campos, Brazil. Follow... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians begin to rotate the Aquarius/SAC-D spacecraft into a vertical position for testing.         Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/Dan Liberotti, VAFB KSC-2011-2912

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians begin to rotate the Aquarius/SAC-D spacecraft into a ver... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians on suspended platforms are preparing to install the second solar array to the Aquarius/SAC-D spacecraft.  Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3240

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians on suspended platforms are preparing to install the seco... More

VANDENBERG AIR FORCE BASE, Calif. --In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to test the second solar array after integration to the Aquarius/SAC-D spacecraft.  Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3245

VANDENBERG AIR FORCE BASE, Calif. --In Space Systems International's P...

VANDENBERG AIR FORCE BASE, Calif. --In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to test the second solar array after integration ... More

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California, the Aquarius/SAC-D spacecraft is secure inside the United Launch Alliance’s Delta II payload fairing. Aquarius will be integrated to the Delta II rocket in preparation for the targeted June 9 liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-4285

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower a...

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California, the Aquarius/SAC-D spacecraft is secure inside the United Launch Allia... More

In the Payload Hazardous Servicing Facility, workers help guide the spacecraft Stardust being lowered in order to mate it with the third stage of a Boeing Delta II rocket. Targeted for launch Feb. 6 from Launch Pad 17-A, Cape Canaveral Air Station, aboard the Delta II rocket, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0101

In the Payload Hazardous Servicing Facility, workers help guide the sp...

In the Payload Hazardous Servicing Facility, workers help guide the spacecraft Stardust being lowered in order to mate it with the third stage of a Boeing Delta II rocket. Targeted for launch Feb. 6 from Launch... More

In the Payload Hazardous Servicing Facility, the Stardust spacecraft waits to be encased in a protective canister for its move to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. Stardust is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0120

In the Payload Hazardous Servicing Facility, the Stardust spacecraft w...

In the Payload Hazardous Servicing Facility, the Stardust spacecraft waits to be encased in a protective canister for its move to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. Stardust i... More

VANDENBERG AIR FORCE BASE, Calif. --At Vandenberg Air Force Base in California, a crane raises one of three United Launch Alliance Delta II solid rocket motors on the pad at Space Launch Complex-2 West (SLC-2W). A second motor was installed earlier in the morning. Scheduled to launch in June, the Delta II rocket will carry NASA's Aquarius satellite into low Earth orbit.    Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2197

VANDENBERG AIR FORCE BASE, Calif. --At Vandenberg Air Force Base in Ca...

VANDENBERG AIR FORCE BASE, Calif. --At Vandenberg Air Force Base in California, a crane raises one of three United Launch Alliance Delta II solid rocket motors on the pad at Space Launch Complex-2 West (SLC-2W)... More

VANDENBERG AIR FORCE BASE, Calif. -- Workers attach cables from an overhead crane to the United Launch Alliance Delta II second stage motor for mating to the first stage at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.            Following final tests, the Aquarius/SAC-D spacecraft will be integrated to the Delta II launch vehicle in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3887

VANDENBERG AIR FORCE BASE, Calif. -- Workers attach cables from an ove...

VANDENBERG AIR FORCE BASE, Calif. -- Workers attach cables from an overhead crane to the United Launch Alliance Delta II second stage motor for mating to the first stage at NASA's Space Launch Complex-2 (SLC-2)... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California.  Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.      Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing KSC-2011-2631

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Forc... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California.  Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.          Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing KSC-2011-2634

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. ... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians are rotating the  Aquarius/SAC-D spacecraft into a vertical position for testing.       Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/Dan Liberotti, VAFB KSC-2011-2913

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians are rotating the Aquarius/SAC-D spacecraft into a verti... More

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California, workers monitor the progress as the United Launch Alliance’s Delta II payload fairing closes around the Aquarius/SAC-D spacecraft. Aquarius will be integrated to the Delta II rocket in preparation for the targeted June 9 liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-4281

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower a...

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California, workers monitor the progress as the United Launch Alliance’s Delta II ... More

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California has moved away from the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop in preparation for launch.        Liftoff is slated for 7:20 PDT/10:20 EDT today. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. For more information visit: www.nasa.gov/aquarius. Photo credit: NASA/VAFB KSC-2011-4356

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA'...

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California has moved away from the United Launch Alliance Delta II rocket with the Aquari... More

VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E.        Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB KSC-2011-1969

VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage...

VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit onto the launch pad at Vandenberg Air Force Base's Sp... More

Researchers from the Smithsonian Institution hope their experiment in a local scrub oak community at KSC will yield new insights into the effects of increased carbon dioxide on natural vegetation. The experiment features a four-acre site just north of the Launch Complex 39 area. Increased amoounts of carbon dioxide are piped into 16 open-top chambers that house pristine Florida scrub vegetation, chosen because it is small and woody and fits in the chambers and can be controlled, yet has the attributes of much larger forests. Experts predict a doubling of the carbon dioxide in the Earth's atmosphere during the next century, and the three-year KSC project being conducted by the Smithsonian-led team hopes that by simulating the increase, they can determine how natural ecosystems and vegetation will respond. Also participating in the effort are KSC, academic and international organizations. The study is being funded by a Department of energy grant KSC-96pc633

Researchers from the Smithsonian Institution hope their experiment in ...

Researchers from the Smithsonian Institution hope their experiment in a local scrub oak community at KSC will yield new insights into the effects of increased carbon dioxide on natural vegetation. The experimen... More

At Launch Pad 17-A, Cape Canaveral Air Station, a worker holds the video camera to be mounted on the second stage of a Boeing Delta II rocket that will launch the Stardust spacecraft on Feb. 6. His co-worker (right) makes equipment adjustments. Looking toward Earth, the camera will record the liftoff and separation of the first stage. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0117

At Launch Pad 17-A, Cape Canaveral Air Station, a worker holds the vid...

At Launch Pad 17-A, Cape Canaveral Air Station, a worker holds the video camera to be mounted on the second stage of a Boeing Delta II rocket that will launch the Stardust spacecraft on Feb. 6. His co-worker (r... More

In the Payload Hazardous Servicing Facility, workers check the final adjustments on the protective canister enclosing the Stardust spacecraft. Stardust will be moved to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. The spacecraft is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0123

In the Payload Hazardous Servicing Facility, workers check the final a...

In the Payload Hazardous Servicing Facility, workers check the final adjustments on the protective canister enclosing the Stardust spacecraft. Stardust will be moved to Launch Pad 17-A, Cape Canaveral Air Stati... More

Inside the launch tower at Pad 17-A, Cape Canaveral Air Station, workers guide the Stardust spacecraft toward an opening to a Boeing Delta II rocket below. The spacecraft is already connected to the third stage of the rocket that will be mated with the second stage in preparation for liftoff on Feb. 6. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0128

Inside the launch tower at Pad 17-A, Cape Canaveral Air Station, worke...

Inside the launch tower at Pad 17-A, Cape Canaveral Air Station, workers guide the Stardust spacecraft toward an opening to a Boeing Delta II rocket below. The spacecraft is already connected to the third stage... More

At Launch Pad 17-A, Cape Canaveral Air Station, workers check the lower fittings of the fairing installed around the Stardust spacecraft and upper stage of the Boeing Delta II rocket. Targeted for launch at 4:06:42 p.m. on Feb. 6, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0147

At Launch Pad 17-A, Cape Canaveral Air Station, workers check the lowe...

At Launch Pad 17-A, Cape Canaveral Air Station, workers check the lower fittings of the fairing installed around the Stardust spacecraft and upper stage of the Boeing Delta II rocket. Targeted for launch at 4:0... More

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane lifts the Aquarius/SAC-D spacecraft from its stand by an overhead to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow.          Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2756

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane lifts the Aquar...

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane lifts the Aquarius/SAC-D spacecraft from its stand by an overhead to cell 3 at the Spaceport Systems International payload processing facility at Vandenber... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians  extend the second solar array on the Aquarius/SAC-D spacecraft to test the release mechanism sequence for the array using signal commands.    Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3249

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians extend the second solar array on the Aquarius/SAC-D spa... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft, secured inside its payload transportation canister, has been delivered to NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.       There, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3858

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft, se...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft, secured inside its payload transportation canister, has been delivered to NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base i... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft, secured inside its payload transportation canister, is being transferred to NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.         There, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3854

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft, se...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft, secured inside its payload transportation canister, is being transferred to NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base... More

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California has moved away from the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop in preparation for launch.        Liftoff is slated for 7:20 PDT/10:20 EDT today. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. For more information visit: www.nasa.gov/aquarius. Photo credit: NASA/VAFB KSC-2011-4354

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA'...

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California has moved away from the United Launch Alliance Delta II rocket with the Aquari... More

Face silhouette window building. A silhouette of a man standing in front of a building

Face silhouette window building. A silhouette of a man standing in fro...

Architecture stock photograph: A man's head in a circular pattern / A silhouette of a man standing in front of a building.

A Blue Angels Flight Demonstration Squadron technician, sitting in the cockpit of an F/A-18 Hornet aircraft, relates aerobatic insights with a comrade-in-arms

A Blue Angels Flight Demonstration Squadron technician, sitting in the...

The original finding aid described this photograph as: Base: Naval Air Facility, El Centro State: California (CA) Country: United States Of America (USA) Scene Camera Operator: PH1 Chuck Mussi Release Stat... More

At Launch Pad 17-A, Cape Canaveral Air Station, the Stardust spacecraft, attached to the third stage of a Boeing Delta II rocket, is lifted up the launch tower. The second and third stages of the rocket will be mated next as preparations continue for liftoff on Feb. 6. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0127

At Launch Pad 17-A, Cape Canaveral Air Station, the Stardust spacecraf...

At Launch Pad 17-A, Cape Canaveral Air Station, the Stardust spacecraft, attached to the third stage of a Boeing Delta II rocket, is lifted up the launch tower. The second and third stages of the rocket will be... More

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane, workers guide the first stage of the United Launch Alliance Delta II rocket that will carry the Aquarius/SAC-D spacecraft into low Earth orbit, into the service tower at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.             Following final tests, the spacecraft will be integrated to the Delta II in preparation for the targeted June launch. Aquarius, the NASA-built instrument on the SAC-D spacecraft, on its three-year mission, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes. Photo credit: NASA/VAFB KSC-2011-3875

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane...

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane, workers guide the first stage of the United Launch Alliance Delta II rocket that will carry the Aquarius/SAC-D spacecraft into low Earth o... More

VANDENBERG AIR FORCE BASE, Calif.  -- With the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California back in place, United Space Alliance technicians complete the installation of the second stage of a Delta II rocket to the first stage. The rocket is being prepared to launch NASA's Aquarius satellite into low Earth orbit.      Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2456

VANDENBERG AIR FORCE BASE, Calif. -- With the Space Launch Complex-2 ...

VANDENBERG AIR FORCE BASE, Calif. -- With the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California back in place, United Space Alliance technicians complete the installation ... More

VANDENBERG AIR FORCE BASE, Calif.  -- United Space Alliance technicians hoist the second stage of a Delta II rocket into position in the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California. The rocket is being prepared to launch NASA's Aquarius satellite into low Earth orbit.      Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2453

VANDENBERG AIR FORCE BASE, Calif. -- United Space Alliance technician...

VANDENBERG AIR FORCE BASE, Calif. -- United Space Alliance technicians hoist the second stage of a Delta II rocket into position in the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is unpacked and unveiled in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The container protected the spacecraft on its journey from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.      Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2728

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is unpacked and unveiled in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The con... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians are rotating the Aquarius/SAC-D spacecraft from a vertical to horizontal position for testing. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-3002

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians are rotating the Aquarius/SAC-D spacecraft from a vertic... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians are rotating the  Aquarius/SAC-D spacecraft from a vertical to horizontal position for testing. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-3004

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians are rotating the Aquarius/SAC-D spacecraft from a verti... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to close the solar arrays on the Aquarius/SAC-D spacecraft.     Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3223

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to close the solar arrays on the Aquarius/SAC-D ... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, NASA's Aquarius/SAC-D spacecraft is rotated for the final time into a vertical position prior to its installation into a transportation canister.           Following delivery to the launch pad, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June liftoff. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3491

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, NASA's Aquarius/SAC-D spacecraft is rotated for the final time into ... More

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California, workers prepare the Aquarius/SAC-D spacecraft for fairing installation. Aquarius will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June 9 liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-4278

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower a...

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California, workers prepare the Aquarius/SAC-D spacecraft for fairing installation... More

Public domain stock image. Analytics statistics insights, business finance.
A stone arch with a clock on top of it Beautiful gate archway input.

A stone arch with a clock on top of it Beautiful gate archway input.

The gate of the castle / The entrance to the castle public domain stock photo. The gate of the castle / The entrance to the castle - public domain art photo.

At Launch Pad 17-A, Cape Canaveral Air Station, workers finish mounting a video camera on the second stage of a Boeing Delta II rocket that will launch the Stardust spacecraft on Feb. 6. Looking toward Earth, the camera will record the liftoff and separation of the first stage. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0118

At Launch Pad 17-A, Cape Canaveral Air Station, workers finish mountin...

At Launch Pad 17-A, Cape Canaveral Air Station, workers finish mounting a video camera on the second stage of a Boeing Delta II rocket that will launch the Stardust spacecraft on Feb. 6. Looking toward Earth, t... More

At Launch Pad 17-A, Cape Canaveral Air Station, workers watch as the protective canister is lifted from the Stardust spacecraft. Preparations continue for liftoff of the Boeing Delta II rocket carrying Stardust on Feb. 6. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0133

At Launch Pad 17-A, Cape Canaveral Air Station, workers watch as the p...

At Launch Pad 17-A, Cape Canaveral Air Station, workers watch as the protective canister is lifted from the Stardust spacecraft. Preparations continue for liftoff of the Boeing Delta II rocket carrying Stardust... More

At Launch Pad 17-A, Cape Canaveral Air Station, as tower rollback begins, a Boeing Delta II rocket undergoes final preparations for launch. The targeted launch time is 4:06 p.m. EST. The Delta II rocket is carrying the Stardust spacecraft, destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0152

At Launch Pad 17-A, Cape Canaveral Air Station, as tower rollback begi...

At Launch Pad 17-A, Cape Canaveral Air Station, as tower rollback begins, a Boeing Delta II rocket undergoes final preparations for launch. The targeted launch time is 4:06 p.m. EST. The Delta II rocket is carr... More

VANDENBERG AIR FORCE BASE, Calif. --As the sun rises over Vandenberg Air Force Base in California, United Launch Alliance technicians prepare to raise one of three Delta II solid rocket motors on the pad at Space Launch Complex-2 West (SLC-2W). Scheduled to launch in June, the Delta II rocket will carry NASA's Aquarius satellite into low Earth orbit.    Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2190

VANDENBERG AIR FORCE BASE, Calif. --As the sun rises over Vandenberg A...

VANDENBERG AIR FORCE BASE, Calif. --As the sun rises over Vandenberg Air Force Base in California, United Launch Alliance technicians prepare to raise one of three Delta II solid rocket motors on the pad at Spa... More

VANDENBERG AIR FORCE BASE, Calif. -- With the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California back in place, United Space Alliance technicians lower the second stage of a Delta II rocket into position over the first stage and three solid rocket motors. The rocket is being prepared to launch NASA's Aquarius satellite into low Earth orbit.        Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2455

VANDENBERG AIR FORCE BASE, Calif. -- With the Space Launch Complex-2 (...

VANDENBERG AIR FORCE BASE, Calif. -- With the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California back in place, United Space Alliance technicians lower the second stage of a... More

VANDENBERG AIR FORCE BASE, Calif. -- Technicians prepare to unpack and unveil the Aquarius/SAC-D spacecraft in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The container protected the spacecraft on its journey from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.            Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2724

VANDENBERG AIR FORCE BASE, Calif. -- Technicians prepare to unpack and...

VANDENBERG AIR FORCE BASE, Calif. -- Technicians prepare to unpack and unveil the Aquarius/SAC-D spacecraft in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in Cal... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians have rotated the Aquarius/SAC-D spacecraft into a vertical position for testing.   Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/Dan Liberotti, VAFB KSC-2011-2915

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians have rotated the Aquarius/SAC-D spacecraft into a vertic... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians have rotated the Aquarius/SAC-D spacecraft into a horizontal position for testing. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-3006

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians have rotated the Aquarius/SAC-D spacecraft into a horizo... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians configure antenna hats in preparation for system tests on the Aquarius/SAC-D spacecraft.   Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3235

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians configure antenna hats in preparation for system tests o... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, a technician makes an adjustment to the solar array after it was installed to the Aquarius/SAC-D spacecraft.   Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3228

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, a technician makes an adjustment to the solar array after it was ins... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to test the solar array after its integration to the Aquarius/SAC-D spacecraft.   Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3226

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to test the solar array after its integration to... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to test the second solar array after integration to the Aquarius/SAC-D spacecraft.   Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3246

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to test the second solar array after integration... More

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California has moved away from the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop in preparation for launch.        Liftoff is slated for 7:20 PDT/10:20 EDT today. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. For more information visit: www.nasa.gov/aquarius. Photo credit: NASA/VAFB KSC-2011-4353

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA'...

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California has moved away from the United Launch Alliance Delta II rocket with the Aquari... More

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Vandenberg Air Force Base in California the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop is prepared for launch.        Liftoff is slated for 7:20 PDT/10:20 EDT today. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. For more information visit: www.nasa.gov/aquarius. Photo credit: NASA/VAFB KSC-2011-4359

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Van...

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Vandenberg Air Force Base in California the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop is prepared for laun... More

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Vandenberg Air Force Base in California the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop is prepared for launch.        Liftoff is slated for 7:20 PDT/10:20 EDT today. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. For more information visit: www.nasa.gov/aquarius. Photo credit: NASA/VAFB KSC-2011-4364

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Van...

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Vandenberg Air Force Base in California the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop is prepared for laun... More

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E.      Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB KSC-2011-1970

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II r...

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Laun... More

Completely enclosed in a protective canister, the spacecraft Stardust is moved by a crane toward a transporter in the Payload Hazardous Servicing Facility. Stardust is being moved to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. The spacecraft is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0124

Completely enclosed in a protective canister, the spacecraft Stardust ...

Completely enclosed in a protective canister, the spacecraft Stardust is moved by a crane toward a transporter in the Payload Hazardous Servicing Facility. Stardust is being moved to Launch Pad 17-A, Cape Canav... More

Workers in the Payload Hazardous Servicing Facility keep watch as an overhead crane lowers the Stardust spacecraft, enclosed in a protective canister, onto a transporter. Stardust is being moved to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. The spacecraft is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0125

Workers in the Payload Hazardous Servicing Facility keep watch as an o...

Workers in the Payload Hazardous Servicing Facility keep watch as an overhead crane lowers the Stardust spacecraft, enclosed in a protective canister, onto a transporter. Stardust is being moved to Launch Pad 1... More

Workers watch as the protective canister surrounding the Stardust spacecraft is removed at Launch Pad 17-A, Cape Canaveral Air Station. Preparations continue for liftoff of the Boeing Delta II rocket carrying Stardust on Feb. 6. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0135

Workers watch as the protective canister surrounding the Stardust spac...

Workers watch as the protective canister surrounding the Stardust spacecraft is removed at Launch Pad 17-A, Cape Canaveral Air Station. Preparations continue for liftoff of the Boeing Delta II rocket carrying S... More

At Launch Pad 17-A, Cape Canaveral Air Station, workers begin placing the fairing around the Stardust spacecraft and upper stage of the Boeing Delta II rocket. Targeted for launch at 4:06:42 p.m. on Feb. 6, Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0146

At Launch Pad 17-A, Cape Canaveral Air Station, workers begin placing ...

At Launch Pad 17-A, Cape Canaveral Air Station, workers begin placing the fairing around the Stardust spacecraft and upper stage of the Boeing Delta II rocket. Targeted for launch at 4:06:42 p.m. on Feb. 6, Sta... More

VANDENBERG AIR FORCE BASE, Calif. --As the sun rises over Vandenberg Air Force Base in California, a crane begins to raise one of three United Launch Alliance Delta II solid rocket motors on the pad at Space Launch Complex-2 West (SLC-2W). Scheduled to launch in June, the Delta II rocket will carry NASA's Aquarius satellite into low Earth orbit.    Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2191

VANDENBERG AIR FORCE BASE, Calif. --As the sun rises over Vandenberg A...

VANDENBERG AIR FORCE BASE, Calif. --As the sun rises over Vandenberg Air Force Base in California, a crane begins to raise one of three United Launch Alliance Delta II solid rocket motors on the pad at Space La... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is unpacked and unveiled in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The container protected the spacecraft on its journey from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.        Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2727

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is unpacked and unveiled in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The con... More

VANDENBERG AIR FORCE BASE, Calif. --  Technicians await the arrival of the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow.                  Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2752

VANDENBERG AIR FORCE BASE, Calif. -- Technicians await the arrival of...

VANDENBERG AIR FORCE BASE, Calif. -- Technicians await the arrival of the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in ... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to rotate the Aquarius/SAC-D spacecraft from a vertical to horizontal position for testing. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission.  Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2997

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to rotate the Aquarius/SAC-D spacecraft from a v... More

VANDENBERG AIR FORCE BASE, Calif. --In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians have suspended a platform over the Aquarius/SAC-D spacecraft to allow access for the installation of the second solar array.   Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3236

VANDENBERG AIR FORCE BASE, Calif. --In Space Systems International's P...

VANDENBERG AIR FORCE BASE, Calif. --In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians have suspended a platform over the Aquarius/SAC-D spacecr... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, NASA's Aquarius/SAC-D spacecraft is rotated for the final time into a vertical position prior to its installation into a transportation canister.             Following delivery to the launch pad, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June liftoff. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3488

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, NASA's Aquarius/SAC-D spacecraft is rotated for the final time into ... More

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, NASA's Aquarius/SAC-D spacecraft, secured inside its payload transportation canister, is being transferred to Space Launch Complex-2.            There, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June liftoff. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3855

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in C...

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, NASA's Aquarius/SAC-D spacecraft, secured inside its payload transportation canister, is being transferred to Space Launch Comple... More

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane lifts the Aquarius/SAC-D spacecraft, secured inside its payload transportation canister, into the mobile service tower at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.       There, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3861

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane lifts the Aquar...

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane lifts the Aquarius/SAC-D spacecraft, secured inside its payload transportation canister, into the mobile service tower at NASA's Space Launch Complex-2 (SL... More

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California, workers prepare the Aquarius/SAC-D spacecraft for fairing installation. Aquarius will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June 9 liftoff.   Aquarius, the NASA-built instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-4277

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower a...

VANDENBERG AIR FORCE BASE, Calif. -- Inside the mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California, workers prepare the Aquarius/SAC-D spacecraft for fairing installation... More

Researchers from the Smithsonian Institution hope their experiment in a local scrub oak community at KSC will yield new insights into the effects of increased carbon dioxide on natural vegetation. The experiment features a four-acre site just north of the Launch Complex 39 area. Increased amoounts of carbon dioxide are piped into 16 open-top chambers that house pristine Florida scrub vegetation, chosen because it is small and woody and fits in the chambers and can be controlled, yet has the attributes of much larger forests. Experts predict a doubling of the carbon dioxide in the Earth's atmosphere during the next century, and the three-year KSC project being conducted by the Smithsonian-led team hopes that by simulating the increase, they can determine how natural ecosystems and vegetation will respond. Also participating in the effort are KSC, academic and international organizations. The study is being funded by a Department of energy grant KSC-96pc634

Researchers from the Smithsonian Institution hope their experiment in ...

Researchers from the Smithsonian Institution hope their experiment in a local scrub oak community at KSC will yield new insights into the effects of increased carbon dioxide on natural vegetation. The experimen... More

At Launch Pad 17-A, Cape Canaveral Air Station, the Stardust spacecraft is revealed after removal of a protective canister. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0136

At Launch Pad 17-A, Cape Canaveral Air Station, the Stardust spacecraf...

At Launch Pad 17-A, Cape Canaveral Air Station, the Stardust spacecraft is revealed after removal of a protective canister. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket. The spacecr... More

Flames sear the pristine blue sky behind the Boeing Delta II rocket carrying the Stardust spacecraft after the 4:04:15 p.m. launch from Launch Pad 17-A, Cape Canaveral Air Station. A 24-hour scrub postponed the launch from the originally scheduled date of Feb. 6. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0159

Flames sear the pristine blue sky behind the Boeing Delta II rocket ca...

Flames sear the pristine blue sky behind the Boeing Delta II rocket carrying the Stardust spacecraft after the 4:04:15 p.m. launch from Launch Pad 17-A, Cape Canaveral Air Station. A 24-hour scrub postponed the... More

Major General Thomas A. Braaten (left), Commander Air Bases East and Major General Dennis T. Krupp, Commander 2d Marine Aircraft Wing, acknowledged their Marines wives for completing the L.I.N.K.S. class. L.I.N.K.S. stands for Lifestyle Insights, Networking, Knowledge and Skills. It is designed around four goals to serve as an orientation to Marine Corps life

Major General Thomas A. Braaten (left), Commander Air Bases East and M...

The original finding aid described this photograph as: Base: Mcas, Cherry Point State: North Carolina (NC) Country: United States Of America (USA) Scene Major Command Shown: MCAS and Wing CG Scene Camera O... More

NASA Satellite Images Provide Insights Into Iceland Volcanic Plume

NASA Satellite Images Provide Insights Into Iceland Volcanic Plume

On April 15, 2010, NASA Terra spacecraft captured these images of the ongoing eruption of Iceland Eyjafjallajökull Volcano, which continues to spew ash into the atmosphere and impact air travel worldwide. NASA/GSFC/JPL

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane, workers lift the first stage of the United Launch Alliance Delta II rocket that will carry the Aquarius/SAC-D spacecraft into low Earth orbit, into the service tower at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.               Following final tests, the spacecraft will be integrated to the Delta II in preparation for the targeted June launch. Aquarius, the NASA-built instrument on the SAC-D spacecraft, on its three-year mission, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes. Photo credit: NASA/VAFB KSC-2011-3869

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane...

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane, workers lift the first stage of the United Launch Alliance Delta II rocket that will carry the Aquarius/SAC-D spacecraft into low Earth or... More

VANDENBERG AIR FORCE BASE, Calif.  -- With the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California back in place, United Space Alliance technicians lower the second stage of a Delta II rocket into position over the first stage. The rocket is being prepared to launch NASA's Aquarius satellite into low Earth orbit.    Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2454

VANDENBERG AIR FORCE BASE, Calif. -- With the Space Launch Complex-2 ...

VANDENBERG AIR FORCE BASE, Calif. -- With the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California back in place, United Space Alliance technicians lower the second stage of ... More

VANDENBERG AIR FORCE BASE, Calif. -- United Space Alliance technicians prepare to hoist the second stage of a Delta II rocket into position in the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California. The rocket is being prepared to launch NASA's Aquarius satellite into low Earth orbit.    Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2451

VANDENBERG AIR FORCE BASE, Calif. -- United Space Alliance technicians...

VANDENBERG AIR FORCE BASE, Calif. -- United Space Alliance technicians prepare to hoist the second stage of a Delta II rocket into position in the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air ... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to rotate the Aquarius/SAC-D spacecraft into a vertical position for testing.           Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/Dan Liberotti, VAFB KSC-2011-2911

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to rotate the Aquarius/SAC-D spacecraft into a v... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians are rotating the  Aquarius/SAC-D spacecraft from a vertical to horizontal position for testing. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission.   Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-3001

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians are rotating the Aquarius/SAC-D spacecraft from a verti... More

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Vandenberg Air Force Base in California the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop is prepared for launch.        Liftoff is slated for 7:20 PDT/10:20 EDT today. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. For more information visit: www.nasa.gov/aquarius. Photo credit: NASA/VAFB KSC-2011-4357

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Van...

VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Launch Complex-2 at Vandenberg Air Force Base in California the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop is prepared for laun... More

Public domain stock image. Analytics statistics insights, business finance.
In the Payload Hazardous Servicing Facility, Casey McClellan (left) and Denise Kato (right), with Lockheed Martin, prepare the spacecraft Stardust for a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0097

In the Payload Hazardous Servicing Facility, Casey McClellan (left) an...

In the Payload Hazardous Servicing Facility, Casey McClellan (left) and Denise Kato (right), with Lockheed Martin, prepare the spacecraft Stardust for a media presentation. Stardust is targeted for launch on Fe... More

In the Payload Hazardous Servicing Facility, the spacecraft Stardust is on display for a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0094

In the Payload Hazardous Servicing Facility, the spacecraft Stardust i...

In the Payload Hazardous Servicing Facility, the spacecraft Stardust is on display for a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape ... More

Billows of exhaust roll across Launch Pad 17-A, Cape Canaveral Air Station, as the Boeing Delta II rocket carrying the Stardust spacecraft launches on time. At left is the mobile launch tower. After a 24-hour postponement, the rocket lifted off at 4:04:15 p.m. EST. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0161

Billows of exhaust roll across Launch Pad 17-A, Cape Canaveral Air Sta...

Billows of exhaust roll across Launch Pad 17-A, Cape Canaveral Air Station, as the Boeing Delta II rocket carrying the Stardust spacecraft launches on time. At left is the mobile launch tower. After a 24-hour p... More

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane, workers guide the first stage of the United Launch Alliance Delta II rocket that will carry the Aquarius/SAC-D spacecraft into low Earth orbit, into the service tower at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.             Following final tests, the spacecraft will be integrated to the Delta II in preparation for the targeted June launch. Aquarius, the NASA-built instrument on the SAC-D spacecraft, on its three-year mission, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes. Photo credit: NASA/VAFB KSC-2011-3874

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane...

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane, workers guide the first stage of the United Launch Alliance Delta II rocket that will carry the Aquarius/SAC-D spacecraft into low Earth o... More

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E.    Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB KSC-2011-1963

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II r...

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch C... More

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E.        Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB KSC-2011-1964

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II r...

VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Laun... More

VANDENBERG AIR FORCE BASE, Calif. -- Workers attach one of three solid rocket motors to a United Launch Alliance Delta II launch vehicle in the service tower at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.       Following final tests, the spacecraft will be integrated to the Delta II in preparation for the targeted June launch. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3884

VANDENBERG AIR FORCE BASE, Calif. -- Workers attach one of three solid...

VANDENBERG AIR FORCE BASE, Calif. -- Workers attach one of three solid rocket motors to a United Launch Alliance Delta II launch vehicle in the service tower at NASA's Space Launch Complex-2 (SLC-2) at Vandenbe... More

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane workers lift one of three United Launch Alliance Delta II solid rocket motors into the service tower at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.         Following final tests, the spacecraft will be integrated to the Delta II in preparation for the targeted June launch. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3880

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane...

VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane workers lift one of three United Launch Alliance Delta II solid rocket motors into the service tower at NASA's Space Launch Complex-2 (SLC-... More

VANDENBERG AIR FORCE BASE, Calif. -- The United Launch Alliance Delta II rocket is moved away from the service tower as workers prepare to lift the second stage to the top of the tower for mating with the first stage at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.         Following final tests, the Aquarius/SAC-D spacecraft will be integrated to the Delta II launch vehicle in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3885

VANDENBERG AIR FORCE BASE, Calif. -- The United Launch Alliance Delta ...

VANDENBERG AIR FORCE BASE, Calif. -- The United Launch Alliance Delta II rocket is moved away from the service tower as workers prepare to lift the second stage to the top of the tower for mating with the first... More

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane moves the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow.      Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2759

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane moves the Aquar...

VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane moves the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California... More

VANDENBERG AIR FORCE BASE, Calif. -- A technician guides the Aquarius/SAC-D spacecraft toward the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow.    Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2011-2760

VANDENBERG AIR FORCE BASE, Calif. -- A technician guides the Aquarius/...

VANDENBERG AIR FORCE BASE, Calif. -- A technician guides the Aquarius/SAC-D spacecraft toward the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vanden... More

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians have detached the overhead crane that moved the second solar array for integration and testing to the Aquarius/SAC-D spacecraft.  Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3244

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's ...

VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, technicians have detached the overhead crane that moved the second s... More

VANDENBERG AIR FORCE BASE, Calif. -- Workers remove the payload transportation canister from the Aquarius/SAC-D spacecraft, after it was lifted into the mobile service tower at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California.     There, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB KSC-2011-3862

VANDENBERG AIR FORCE BASE, Calif. -- Workers remove the payload transp...

VANDENBERG AIR FORCE BASE, Calif. -- Workers remove the payload transportation canister from the Aquarius/SAC-D spacecraft, after it was lifted into the mobile service tower at NASA's Space Launch Complex-2 (SL... More

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California slowly moves away from the United Launch Alliance Delta II rocket with the Aquarius/SAC-D spacecraft atop in preparation for launch.          Liftoff is slated for 7:20 PDT/10:20 EDT today. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. For more information visit: www.nasa.gov/aquarius. Photo credit: NASA/VAFB KSC-2011-4352

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA'...

VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California slowly moves away from the United Launch Alliance Delta II rocket with the Aqu... More

The cover is removed from the Stardust spacecraft in the Payload Hazardous Servicing Facility prior to a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0093

The cover is removed from the Stardust spacecraft in the Payload Hazar...

The cover is removed from the Stardust spacecraft in the Payload Hazardous Servicing Facility prior to a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch... More

At Launch Pad 17-A, Cape Canaveral Air Station, a worker (left) runs a wire through a mounting hole on the second stage of a Boeing Delta II rocket in order to affix an external video camera held by the worker at right. The Delta II will launch the Stardust spacecraft on Feb. 6. Looking toward Earth, the camera will record the liftoff and separation of the first stage. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0116

At Launch Pad 17-A, Cape Canaveral Air Station, a worker (left) runs a...

At Launch Pad 17-A, Cape Canaveral Air Station, a worker (left) runs a wire through a mounting hole on the second stage of a Boeing Delta II rocket in order to affix an external video camera held by the worker ... More

In the Payload Hazardous Servicing Facility, workers check the mating of the spacecraft Stardust (above) with the third stage of a Boeing Delta II rocket (below). Targeted for launch Feb. 6 from Launch Pad 17-A, Cape Canaveral Air Station, aboard the Delta II rocket, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0102

In the Payload Hazardous Servicing Facility, workers check the mating ...

In the Payload Hazardous Servicing Facility, workers check the mating of the spacecraft Stardust (above) with the third stage of a Boeing Delta II rocket (below). Targeted for launch Feb. 6 from Launch Pad 17-A... More

In the Payload Hazardous Servicing Facility, a canister (left) is moved toward the Stardust spacecraft (right). The protective canister will enclose Stardust before the spacecraft is moved to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. Stardust is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006 KSC-99pc0121

In the Payload Hazardous Servicing Facility, a canister (left) is move...

In the Payload Hazardous Servicing Facility, a canister (left) is moved toward the Stardust spacecraft (right). The protective canister will enclose Stardust before the spacecraft is moved to Launch Pad 17-A, C... More

Previous

of 2

Next