PICRYL
PICRYLThe World's Largest Public Domain Source
  • homeHome
  • searchSearch
  • photo_albumStories
  • collectionsCollections
  • infoAbout
  • star_rateUpgrade
  • account_boxLogin

First JATO assisted Flight

JATO Flight Test Crew

Bumper V-2 Launch

Theodore von Karman

Explorer I Architects

Pioneer III Probe

JPL's Hypersonic Wind Tunnel

JPL Key Figures

Aerial View of JPL

Kennedy Receives Mariner 2 Model

Mariner photos presented to President Johnson

Cresent Europa

Pioneer 10 Trajectory

Voyager First Science Meeting

210' Dish Antenna at Goldstone Ca - used in tracking Pioneer spacecraft ARC-1972-A72-1280

Deep Space Antenna 210' at Goldstone, CA (JPL ref: P-116594AC) ARC-1972-A72-2699

JET PROPULSION LABORATORY JPL GOLDSTONE TESTS

JET PROPULSION LABORATORY JPL GOLDSTONE TESTS

JET PROPULSION LABORATORY JPL GOLDSTONE TESTS

First Mars Surface Photo

Viking 2 A utopian bright summer afternoon on Mars -- Looking south from Viking 2 on September 7, 1976 the orange-red surface of the nearly level plain upon which the spacecraft sits is seen strewn with rocks as large as three feet across. Many of these rocks are porous and sponge-like, similar to some of Earth's volcanic rocks. Other rocks are coarse-grained such as the large rock at lower left. Between the rocks, the surface is blanketed with fine-grained materials that, in places, is piled into small drifts and banked against some of the larger blocks. The cylindrical mast with the orange cable is the low-gain antenna used to receive cammands form Earth. (JPL ref: P-17690 color) ARC-1976-AC76-1011-2-15

Voyager 2 Launch

Voyager Spacecraft During Vibration Testing

First Picture of the Earth and Moon in a Single Frame

The Sounds of Earth Record Cover

The Sounds of Earth

Artist: unknown (JPL) Saturn Voyager Mission Artwork depicts the spacecraft's path on it's journey to Saturn as it passed above the orbits of Mercury, Venus, Earth, Mars and around Jupiter. ARC-1977-A77-0849

Artist: unknown (JPL) Saturn Voyager Mission Artwork depicts the spacecraft's path on it's journey to Saturn as it passed above the orbits of Mercury, Venus, Earth, Mars and around Jupiter. ARC-1977-AC77-0849

Artwork: JPL Viking Spacecraft to explore planet Mars ARC-1977-AC77-1157

Artwork: JPL Spacecraft Vikings Explore Planet Mars ARC-1977-AC77-1159

Jupiter System Montage

Jupiter's Great Red Spot

Photo by Voyager 1 Jupiter's satellite Io poses before the giant planet in this photo returned Jan 17, 1979 from a distance of 29 million miles (47 million kilometers). The satellite's shadow can be seen falling on the face of Jupiter at left. Io is traveling from left to right in its one-and-three-quarter-day orbit around Jupiter. Even from this great distance the image of Io shows dark poles and bright equatorial region. Voyager 1 will make its closest approach to Jupiter 174, 000 miles (280,000 kilometer) on March 5. It will then continue to Saturn in November 1980. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from three black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (JPL Ref: P-20946C) ARC-1979-AC79-0143-4

Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still more than 25 million miles (40 million kilometers) away. As the spacecraft draws closer to the planet (about 1 million kilometers a day) more details are emergng in the turbulent clouds. The Great Red Spot shows prominently below center, surrounded by what scientists call a remarkably complex region of the giant planet's atmosphere. An elongated yellow cloud within the Great Red Spot is swirling around the spot's interior boundary in a counterclockwise direction with a period of a little less than six days, confirming the whirlpool-like circulation that astronomers have suspected from ground-based photographs. Ganymede, Jupiter's largest satellite, can be seen to the lower left of the planet. Ganymede is a planet-sized body larger than Mercury. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from there black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (ref: P-20945C Mission Image 1-9) ARC-1979-AC79-0143-3

Photo by Voyager 1 (JPL) Jupiter, its Great Red Spot and three of its four largest satellites are visible in this photo taken Feb 5, 1979 by Voyager 1. The spacecraft was 28.4 million kilomters (17.5 million miles) from the planet at the time. The inner-most large satellite, Io, can be seen against Jupiter's disk. Io is distinguished by its bright, brown-yellow surface. To the right of Jupiter is the satellite Europa, also very bright but with fainter surface markings. The darkest satellite, Callisto (still nearly twice as bright as Earth's Moon), is barely visible at the bottom left of the picture. Callisto shows a bright patch in its northern hemisphere. All tThree orbit Jupiter in the equatorial plane, and appear in their present position because Voyageris above the plane. All three satellites show the same face to Jupiter always -- just as Earth's Moon always shows us the same face. In this photo we see the sides of the satellites that always face away from the planet. Jupiter's colorfully banded atmosphere displays complex patterns highlighted by the Great Red Spot, a large, circulating atmospheric disturbance. This photo was assembled from three black and white negatives by the Image Processing Lab at Jet Propulsion Laboratory. JPL manages and controls the Voyage Project for NASA's Office of Space Science. (ref: P-21083) ARC-1969-AC79-0164-2

Voyager 1 Image of Jupiter and two of its satellites (Io, left, and Europa). Io is about 350,000 kilometers (220,000 miles) above Jupiter's Great Red Spot; Europa is about 600,000 kilometers (375,000 miles) above Jupiter's clouds. Although both satellites have about the same brightness, Io's color is very different from Europa's. Io's equatorial region show two types of material -- dark orange, broken by several bright spots -- producing a mottled appearance. The poles are darker and reddish. Preliminary evidence suggests color variations within and between the polar regions. Io's surface composition is unknown, but scientists believe it may be a mixture of salts and sulfur. Erupoa is less strongly colored, although still relatively dark at short wavelengths. Markings on Eruopa are less evident that on the other satellites, although this picture shows darker regions toward the trailing half of the visible disk. Jupiter at this point is about 20 million kilometers (12.4 million miles) from the spacecraft. At this resolution (about 400 kimometers or 250 miles) there is evidence of circular motion in Jupiter's atmosphere. While the dominant large-scale motions are west-to-east, small-scale movement includes eddy-like circulation within and between the bands. (JPL ref: P-21082) ARC-1979-A79-0164-1

Voyager 1 Image of Jupiter and two of its satellites (Io, left, and Europa). Io is about 350,000 kilometers (220,000 miles) above Jupiter's Great Red Spot; Europa is about 600,000 kilometers (375,000 miles) above Jupiter's clouds. Although both satellites have about the same brightness, Io's color is very different from Europa's. Io's equatorial region show two types of material -- dark orange, broken by several bright spots -- producing a mottled appearance. The poles are darker and reddish. Preliminary evidence suggests color variations within and between the polar regions. Io's surface composition is unknown, but scientists believe it may be a mixture of salts and sulfur. Erupoa is less strongly colored, although still relatively dark at short wavelengths. Markings on Eruopa are less evident that on the other satellites, although this picture shows darker regions toward the trailing half of the visible disk. Jupiter at this point is about 20 million kilometers (12.4 million miles) from the spacecraft. At this resolution (about 400 kimometers or 250 miles) there is evidence of circular motion in Jupiter's atmosphere. While the dominant large-scale motions are west-to-east, small-scale movement includes eddy-like circulation within and between the bands. (JPL ref: P-21082) ARC-1979-AC79-0164-1

Range :12.2 million kilometers (7.6 million miles) The view in this photo shows Jupiter's Great Red Spot emerging from the five-hour Jovian night. One of the three bright, oval clouds which were observed to form approximately 40 years ago can be seen immediately below the Red Spot. Most of the other features appearing in this view are too small to be seen clearly from Earth. The color picture was assembled from three black and white photos in the Image Processing Lab at JPL. ARC-1979-AC79-7024

Range : 12.2 million kilometers (7.6 million miles) This images shows Jupiter's Great Red Spot emerging from the five-hour Jovian night. One of three bright, oval clouds which were observed to form approx. 40 years ago can be seen below the Red Spot. Most other features appearing in this view are too small to be seen clearly from Earth. This black and white photo was taken through a violet filter. ARC-1979-A79-7024

Range : 5.7 million miles(9.2 million kilometers) Image shows Jupiter's Great Red Spot and surroundings. Cloud detail as small as 100 miles (160 kilometers) across can be seen. Colorful, wavy cloud pattern left of the Red Spot is a region of complex and variable wave motion. ARC-1979-AC79-7025

Range : 9.2 million kilometers (3.7 million miles) This photo shows Jupiter's Great Red Spot and its surroundings. Shown is cloud detail that is 100 miles (160 km) across. The colorful, wavy cloud pattern to the left of the Red Spot is a region of complex and variable wave motion. Photo taken through a violet filter. ARC-1979-A79-7025

Range : 5 million miles (8.025 million kilometers) This is a morning shot of Ganymede, largest of Jupiter's 13 satellites. It's slightly larger than Mercury with a density about twice that of water. It's believed to be made of rock and ice with a surface of water and ice. Ganymede is 4 times brighter than our Moon with the bright spot in center of photo 5 times brighter than the Moon, and may contain more ice than surrounding areas. The bright pattern around the spot seems like ray craters on the Moon and Mercury and the area may in fact be an impact crater that has exposed fresh, underlying ice. Photo taken through blue, green and orange filters. ARC-1979-A79-7026

Range : 5 million miles (8.025 million kilometers) This is a morning shot of Ganymede, largest of Jupiter's 13 satellites. It's slightly larger than Mercury with a density about twice that of water. It's believed to be made of rock and ice with a surface of water and ice. Ganymede is 4 times brighter than our Moon with the bright spot in center of photo 5 times brighter than the Moon, and may contain more ice than surrounding areas. The bright pattern around the spot seems like ray craters on the Moon and Mercury and the area may in fact be an impact crater that has exposed fresh, underlying ice. Photo taken through blue, green and orange filters. ARC-1979-AC79-7026

Range : 6 million kilometers (3.7 million miles) Central Longitude 120 degrees west, North is up. and 3rd from the planet. Photo taken after midnight Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice. ARC-1979-A79-7019

Range : 7 million kilometers (4.3 million miles) Io is Jupiter's innermost of the four Galilean satellites. Photo taken at 2:00 AM through an ultraviolet filter. The photo's background is part of Jupiter's disk. North is at the top and the central longitude of Io is 180 degrees. Io shows a contrasting surface with dark polar areas and many light and dark regions around the equator. This resolution of about 100 miles/160 kilometers, no topographic features, like craters, can be seen. The brighter regions may be areas containing sulfur and various salts, making Io very reflective(six times brighter thanb Earth's Moon). Io is about the same size and density as our Moon, but has followed a different evolutionary path, influenced by its closeness to Jupiter and the intense bombardment it receives from the Jovian radiation belts of energetic charged particles. ARC-1979-A79-7022

Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter makes the mosaic photo, showing the Great Red Spot as a swirling vortex type motion. This motion is also seen in several nearby white clouds. These bright white clouds and the Red Spot are rotating in a counter clockwise direction, except the peculiar filimentary cloud to the right of the Red Spot is going clockwise. The top of the picture shows the turbulence from the equatorial jet and more northerly atmospheric currents. The smallest clouds shown are only 70 miles (120 km) across. ARC-1979-A79-7023

This photo of Callisto, outermost of Jupiter's four Galilean satellites, was taken a few minutes after midnight (PST) Feb. 25 by Voyager 1. The distance to Callisto was 8,023,000 kilometers (4.98 million miles). The hemisphere in this picture shows a fairly uniform surface dotted with brighter spots that are up to several hundred kilometers across. Scientists believe the spots may be impact craters but higher-resolution photos will be necessary before the features can be interpreted. Callisto is about the same size as the planet Mercury--about 5,000 kilometers (3,000 miles) in diameter. Callisto is less massive than Mercury, however, giving it a density less than twice that of water. Scientists believe Callisto, therefore, is composed of a mixture of rock and ice (up to about 50 percent by weight). Its surface is darker than those of the other Galilean satellites, but is still about twice as bright as Earth's Moon. This black-and-white photo was taken through a violet filter. Jet Propulsion Laboratory manages and controls the Voyager project for NASA's Office of Space Science. (JPL ref. No. P-21149) ARC-1979-A79-7027

These four pictures of Jupiter's Great Red Spot were taken Feb. 2 and 3, 1979, when Voyager 1 was about 31 million kilometers (19.4 million miles) from Jupiter. The pictures were taken one Jupiter rotation apart, and that together they depict four days in the life of the centuries-old Red Spot. The pictures clearly demonstrate changes in circulation around the Red Spot during the 40-hour period. The photos were taken through a blue filter. Jet Propulsion Laboratory manages the Voyager project for NASA's Office of Space Science. (JPL ref. No. P-21148) ARC-1979-AC79-7008

Callisto , The outermost Galilean Satellite , or Moon , of Jupiter, as taken by Voyager I . Range : About 7 Million km (5 Million miles) . Callisto, the darkest of the Galilean Satellites, still nearly twice as bright as the Earth's Moon, is seen here from the face that always faces Jupiter. All of the Galilean Satellites always show the same face to Jupiter, as the Earth's moon does to Earth. The Surface shows a mottled appearance of bright and dark patches. The former reminds scientists of rayed or bright haloed craters, similiar to those seen on earth's Moon. This color photo is assembled from 3 black and wite images taken though violet, orange, & green filters ARC-1979-AC79-7002

These four pictures of Jupiter's Great Red Spot were taken Feb. 2 and 3, 1979, when Voyager 1 was about 31 million kilometers (19.4 million miles) from Jupiter. The pictures were taken one Jupiter rotation apart, so that together they depict four days in the life of the centuries-old Red Spot. The pictures clearly demonstrate changes in circulation around the Red Spot during the 40-hour period. The photos were taken through a blue filter. Jet Propulsion Laboratory manages the Voyager project for NASA's Office of Space Science. (JPL ref. No. P-21148) ARC-1979-A79-7028

This mosaic of Jupiter was assembled from nine individual photos taken through an orange filter by Voyager 1 on Feb. 6, 1979, when the spacecraft was 4.7 million miles (7.8 million kilometers) from Jupiter. Distortion of the mosaic, especially where portions of the limb have been fitted together, is caused by rotation of the planet during the 96-second intervals between individual pictures. The large atmospheric feature just below and to the right of center is the Great Red Spot. The complex structure of the cloud formations seen over the entire planet gives some hint of the equally complex motions in the Voyager 1 time-lapse photography. The smallest atomospheric features seen in this view are approximately 85 miles (140 kilometers) across. Voyager project is managed and controlled by Jet Propulsion Laboratory for NASA's Office of Space Science. (JPL ref. No. P-21146) ARC-1979-A79-7029

Range : 7 million kilometers (5 million miles) Callisto is the outermost Galilean satellite of Jupiter and the darkest of the four, but still twice as bright as Earth's Moon. Mottled appearance from bright and dark patches; bright ones look like rayed or brite craters on our Moon. This face of Callisto is always turned toward Jupiter. Photo taken through violet filter. ARC-1979-A79-7017

Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice. ARC-1979-A79-7020

Range : 4.3 million km. ( 2.7 million miles ) Southeast of the Great Red Spot, as seen at upper left, this photograph taken by Voyager I also shows one of Jupiter's 40 year old white ovals, seen at middle left. Along with a variety of other atmospheric features, and flow in and around the ovals, the smallest details in this photograph represent features 80 km. ( 45 miles ) across. ARC-1979-AC79-7010

Range : 5.9 million kilometers (3.66 million miles) Europa is Jupiter's 2nd Galilean satellite from the planet. Photo taken early morning and through a violet filter. Faint swirls and Linear Patterns show in the equarorial region(which is darker than the poles). The hemisphere shown always faces Jupiter. North is up. Europa is the brightest of the Galilian satellites but shows low contrast on this hemisphere. Density and size is similar to Earth's Moon. Indications of water ice or ground water on surface is shown ARC-1979-A79-7018

Range : 5 million km. ( 3 million miles ) This photograph, shot from Voyager I, shows Jupiter's Great Red Spot, turbulent regions immediattely to the west, and, middle right, one of the several white ovals seen on Jupiter from Earth. This photograph represents much better resolution than ever seen by telescopic means to date. The Red Spot and Ovals both reveal intricate, involved structures, the smallest details of which, are estimated at 95 km. ( 55 miles ) across. ARC-1979-AC79-7006

Range : 4.3 million km. ( 2.7 million miles ) This photograph taken from Voyager I shows Jupiter's Great Red Spot and one of the white ovals seen from Earth . These white ovals were seen to have formed in 1939 & 1940, and have remained somewhat consistant since. The Great Red Spot is three times the size of the Earth. This photograph represents the finnest detail seen to date, with the smallest details being 80 km. ( 45 miles ) across. ARC-1979-AC79-7011

Range : 4.2 million kilometers (2.6 million miles) Ganymede is Jupiter's Largest Galilean satellites and 3rd from the planet. Photo taken after midnight Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice. ARC-1979-A79-7016

Europa, taken from Voyager 1 to Jupiter

Range : 4.3 million km. ( 2.7 million miles ) This photograph taken from Voyager I, shows the area east of the Great Red Spot. The dark halo surrounding the bright spot, just to the right of the bright oval, is said by scientists to be, almost certainly, a five micron hot spot. This is a region of the atmosphere warmer than those around it. The dark halo may represent an area in which we are looking deeper into Jupiter's Atmosphere, although not yet completely understood. ARC-1979-AC79-7007

P-21741 C Range: 2.6 million kilometers (1.6 million miles) This picture of Io, taken by Voyager 1, shows the region of the Jovian moon which will be monitored for volcanic eruptions by Voyager 2 during the 'Io movie' sequence. The white and orange patches probably are deposits of sulphur compounds and other volcanic materials. The Voyager 2 pictures of this region will be much more detailed. ARC-1979-AC79-7076

Range : 4.0 million km. ( 2.5 million miles ) This brown oval, located between Jupiter's 13 and 18 degree N latitude, may be an opening in the upper cloud deck. It was a selected target to be photographed by Voyager I on its closest approach to Jupiter because, if observed at high resolution, could provide information on deeper, warmer cloud levels. Above the oval, is the pale orange North Temperate Belt, bounded on the south by the North Temperate Current, with winds of 120 meters/sec. ( 260 Mi./hr ). The smallest resolvable features from this photograph is 75 km ( 45 miles ) wide. ARC-1979-AC79-7005

P-21741 BW Range: 2.6 million kilometers (1.6 million miles) This picture of Io, taken by Voyager 1, shows the region of the Jovian moon which will be monitored for volcanic eruptions by Voyager 2 during the 'Io movie' sequence. The white and orange patches probably are deposits of sulphur compounds and other volcanic materials. The Voyager 2 pictures of this region will be much more detailed. ARC-1979-A79-7076

Europa , the smallest of the Galilean satellites, or Moons , of Jupiter , is seen here as taken by Voyager 1. Range : 2 million km (1.2 million miles) is centered at about the 300 degree Meridian. The bright areas are probably ice deposits, while the dark may be rocky surface or areas of more patchy ice distribution. Most unusual features are systems of linear structures crossing the surface in various directions. Of these, some of which are over 1000 km. long , & 2 or 3 hundred km. wide, may be faults which have disrupted the surface. ARC-1979-AC79-7003

Range : 862,200 km. ( 500,000 miles ) This photograph shows subspacecraft longitude of approximately 146 degrees of Jupiter's moon Io. Circular features are seen that may be meteorite impact craters or features of internal origins. Irregular depressions are seen that indicate surface modifications. The bright irregular patches appear to be younger deposits masking the surface detail. ARC-1979-AC79-7013

2:30 pm Photographer : JPL Range : 2.6 million km. ( 1.6 million miles ) Ganymede is Jupiter's largest satellite ( or moon ) With a radius of about 2600 km., about 1.5 times that of our moon, Ganymede has a bulk density of about 2.0 g/cc, almost half that of our moon, and is probably composed of rock and ice. The large dark regions, in the northeast quadrant, and the white spots, resemble features found on the moon, mare and impact respectively. The long white filaments resemble rays associated with impacts on the lunar surface. The various colors, other than the several blue, green, & orange dots, which are markings on the camera used for pointing determinations and are not physical markings, probably represent differing surface materials. ARC-1979-AC79-7014

Jupiter as seen by Voyager 1, mosaic of planet. (JPL ref. No. P-21147) ARC-1979-AC79-7009

Jupiter as seen by Voyager 1, mosaic of Jupiter's Satellite Io. (JPL ref. No. P-21206) ARC-1979-A79-7015

Jupiter as seen by Voyager 1, mosic of Great Red Spot. (JPL ref. No. P-21203) ARC-1979-AC79-7012

Voyager 1 view Io in its orbit around Jupiter ARC-1979-A79-7115

Voyager 1 catches volcanic eruption on Jupiter's moon Io JPL - no available ARC-1979-A79-7116

As Voyager 1 approches Jupiter three of its moons can be seen JPL ref. No. C-206 ARC-1979-AC79-7111

Voyager 1's look at Jupiter's moon Io JPL ref No. P-21457 ARC-1979-AC79-7114

Voyager 1 close up image of Jupiter moon Io JPL ref. No. P-21277 ARC-1979-AC79-7112

Voyager 1 catches volcanic eruption on Jupiter's moon Io JPL ref No. P-21334 ARC-1979-AC79-7113

P-21742 BW Range: 6 million kilometers (3.72 million miles) This Voyager 2 image shows the region of Jupiter extending from the equator to the southern polar latitudes in the neighborhood of the Great Red Spot. A white oval, different from the one observed in a similiar position at the time of the Voyager 1 encounter, is situated south of the Great Red Spot. The region of white clouds now extends from east of the red spot and around its northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of the red spot has also changed since the equivalent Voyager 1 image. It shows more small scale structure and cloud vortices being formed out of the wave structures. ARC-1979-A79-7077

P-21742 C Range: 6 million kilometers (3.72 million miles) This Voyager 2 image shows the region of Jupiter extending from the equator to the southern polar latitudes in the neighborhood of the Great Red Spot. A white oval, different from the one observed in a similiar position at the time of the Voyager 1 encounter, is situated south of the Great Red Spot. The region of white clouds now extends from east of the red spot and around its northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of the red spot has also changed since the equivalent Voyager 1 image. It shows more small scale structure and cloud vortices being formed out of the wave structures. ARC-1979-AC79-7077

Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures. ARC-1979-AC79-7102

P-21744 C Range: 4.2 million kilometers (2.6 million miles) In this image of Europa acquired by Voyager 2, global scale dark streaks are becoming visible. Europa, the size of the earth's moon, is apparently covered by water ice as indicated by ground based spectrometers and its brightness. The central longitude of this view is 235° west. Bright rayed impact craters which are abundant on ancient Ganymede and Callisto would easily be visible at this range. The suggestion is that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes. ARC-1979-AC79-7078

P-21739 BW Range: 4.7 million kilometers (2.9 million miles) This picture of Io was taken as Voyager 2 closes in on the Jovian system. Scientists are studying these distant views of Io for evidences of changes since Voyager 1 observations in March of 79. Voyager 1 discovered that Io, the innermost of the Galilean satellites, is the most volcanically active body yet seen in the solar system, surpassing even earth. In this picture, the first volcano discovered by Voyager 1 is again visible in the lower left portion of the disk as a dark oval with a dark spot in the center. In March, this volcano appeared as a heart-shaped marking, not a symmetrical oval. Scientists believe that the non-symmetric markings earlier resulted from a constriction in the mouth of the volcanic vent causing erupting material to extrude preferentially in certain directions. Apparently, the volcanic eruptive activity, which sends material to altitudes of 280 kilometers (175 miles) or more above this volcano, has changed the vent geometry or dislodged an obstruction. Such changes in the form of eruptive fountains are common in terrestial volcanos, although on a much smaller scale than on Io. ARC-1979-A79-7074

Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of earth's moon, is apparently covered by water ice, as indicated by ground spectrometers and its brightness. In this view, global scale dark sreaks discovered by Voyager 1 that criss-cross the the satelite are becoming visible. Bright rayed impact craters, which are abundant on Ganymede and Callisto, would be easily visible at this range, suggesting that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes. ARC-1979-A79-7103

Range : 3.4 million km This pair of images shows two of the long-lived white oval clouds which have resided in the Jovian southern hemisphere for nearly 40 years. The upper picture shows the cloud that is at a longitude west of the Great Red Spot, and the lower frame, the cloud at a longitude east of this feature. The third oval is currently just south of the Great Red Spot. The clouds show very similar internal structures. To the east of each of them, recirculation currents are clearly seen. In the lower frame, a similar structure is seen to the west of the cloud. Although a recirculation current is associated with the upper western region of the cloud, it is further away from this feature and not seen in the image. This photo was taken by Voyager 2. ARC-1979-A79-7106

Range : 3.4 million km This pair of images shows two of the long-lived white oval clouds which have resided in the Jovian southern hemisphere for nearly 40 years. The upper picture shows the cloud that is at a longitude west of the Great Red Spot, and the lower frame, the cloud at a longitude east of this feature. The third oval is currently just south of the Great Red Spot. The clouds show very similar internal structures. To the east of each of them, recirculation currents are clearly seen. In the lower frame, a similar structure is seen to the west of the cloud. Although a recirculation current is associated with the upper western region of the cloud, it is further away from this feature and not seen in the image. This photo was taken by Voyager 2. ARC-1979-AC79-7106

Range : 3.2 million km This image returned by Voyager 2 shows one of the long dark clouds observed in the North Equatorial Belt of Jupiter. A high, white cloud is seen moving over the darker cloud, providing an indication of the structure of the cloud layers. Thin white clouds are also seen within the dark cloud. ARC-1979-A79-7105

P-21735 BW This Jupiter image taken by Voyager 2 shows an area from 10° N. Lat. to 34° S. Lat. in a region west of the Great Red Spot. At the top of the picture, equatorial plumes are seen. These features move along the edge of the equatorial zone. The remainder of the equatorial region is characterized by diffuse clouds. The region west of the Great Red Spot is seen as a disturbed wave-like pattern. Similiar flows are seen to the west of the white oval at bottom. ARC-1979-A79-7070

P-21737 C This picture shows a region of the southern hemisphere extending from the Great Red Spot to the south pole. The white oval is seen beneath the Great Red Spot, and several small scale spots are visible farther to the south. Some of these organized cloud spots have similiar morphologies, such as anticyclonic rotations and cyclonic regions to their west. The presence of the white oval causes the streamlines of the flow to bunch up between it and the Great Red Spot. ARC-1979-AC79-7072

P-21737 BW This picture shows a region of the southern hemisphere extending from the Great Red Spot to the south pole. The white oval is seen beneath the Great Red Spot, and several small scale spots are visible farther to the south. Some of these organized cloud spots have similiar morphologies, such as anticyclonic rotations and cyclonic regions to their west. The presence of the white oval causes the streamlines of the flow to bunch up between it and the Great Red Spot. ARC-1979-A79-7072

Range : 3.2 million km This image returned by Voyager 2 shows one of the long dark clouds observed in the North Equatorial Belt of Jupiter. A high, white cloud is seen moving over the darker cloud, providing an indication of the structure of the cloud layers. Thin white clouds are also seen within the dark cloud. At right, blue areas, free of high clouds, are seen. ARC-1979-AC79-7105

P-21738 BW Raange: 4.76 million kilometers (2.9 million miles) This Voyager 2 picture of Io was taken in ultraviolet light and shows one of the volcanic eruption plumes first photographed by Voyager 1. (the bright spot on the right limb) The plume is more than 200 kilometers (124 miles) high. The volcano apparently has been erupting since it was observed by Voyager 1 in March, 1979. This suggests that the volcanoes on Io probably are in continuous eruption. ARC-1979-A79-7073

P-21736 BW This Voyager 2 pictures shows the Great Red Spot and the south equatorial belt extending into the equatorial region. At right is an interchange of material between the south equatorial belt and the equatorial zone. The clouds in this zone are more diffuse and do not display the structures seen in other locations. Considerable structure is evident within the Great Red Spot. ARC-1979-A79-7071

P-21745 BW Range: 1.1 million miles (675,000 miles) This image of Callisto taken by Voyager 2 was enhanced to reveal detail in the scene. Voyager 1's high resolution coverage was of the hemisphere just over the right-hand (eastern) horizon, and the large ring structure discovered by Voyager 1 is just over the eastern limb. This image shows yet another ring structure in the upper part of the picture. Callisto exhibits some of the most ancient terrain seen on any of the satellites. Scientists think Callisto's surface is a mixture of ice and rock dating back to the final stages of planetary accretion (over 4 billion years ago) when the surface was pockmarked by a torrential bombardment of meteorites. Younger craters show as bright spots, probably because they expose fresh ice and frost. ARC-1979-A79-7079

Range : 1,094,666 km (677,000 mi.) This false color picture of Callisto was taken by Voyager 2 and is centered on 11 degrees N and 171 degrees W. This rendition uses an ultraviolet image for the blue component. Because the surface displays regional contrast in UV, variations in surface materials are apparent. Notice in particular the dark blue haloes which surround bright craters in the eastern hemisphere. The surface of Callisto is the most heavily cratered of the Galilean satellites and resembles ancient heavily cratered terrains on the moon, Mercury and Mars. The bright areas are ejecta thrown out by relatively young impact craters. A large ringed structure, probably an impact basin, is shown in the upper left part of the picture. The color version of this picture was constructed by compositing black and white images taken through the ultraviolet, clear and orange filters. ARC-1979-AC79-7104

P-21740 C Range: 2,318,000 kilometers (1,438,000 miles) This picture of Callisto taken by Voyager 2 shows the moon covered with bright spots which are metoerite impact craters--a fact originally discovered from the high resolution pictures taken by Voyager 1. Scientists believe that heavily cratered terrains like these on Callisto are indicative of ancient planetary surfaces. Voyager 2 mapped the side of Callisto not seen by Voyager 1. The obsure dark streaks in this area may be fault zones, but higher resolution pictures are needed for identification. ARC-1979-AC79-7075

P-21747 C Range: 2,200,000 miles This image shows a region of the Jovian atmosphere from approximately 25° N to the equatorial region. The north temperate jet, at approximately 23° N, where the wind speed is about 150 meters per second, is seen as a dark brown line from the left-hand edge to the right-hand corner of the picture. The wispy clouds of the north equatorial belt appear as shades of brown. The lower right-hand corner of the image shows the brighter (white) clouds of the equatorial region. A small blue area is apparent near the lower edge, which corresponds to a region free of the upper clouds, where it is possible to penetrate to cloud layers approximately 60 kilometers below the visible surface. ARC-1979-AC79-7081

P-21746 BW Range: 390,000 kilometers (245,000 miles) This photomosaic of Callisto is composed of nine frames. The impact crater distribution is very uniform across the disk. Notable are the very bright rayed craters that probably are very young. Near the limb is a giant probable impact structure. Several large structures were discovered by Voyager 1. This one is smaller than the largest one found by Voyager 1 but is more clearly shown. About 15 concentric rings surround the bright central spot. Many hundreds of moderate sized impacts are also seen, a few with bright radial ray patterns. The limb is very smooth confirming that no high topography has been seen on the satellite, and observation consistent with its icy composition. ARC-1979-A79-7080

Range : top- 86,000 miles bottom- 192,000 mi. These two close-ups of Ganymede, the largest of Jupiter's 13 moons, show different views of the largest block of dark, heavily cratered terrain. The bottom image shows objects 3 or 4 miles across, with resolution of about 1.5 miles. The light, linear stripes recurring across the dark region resemble the outer rings of the large ring structure around Callisto. If these features are related to an ancient ring structure formed by a large impact, their small curvature suggests that the original structure was even larger than one seen on Callisto. There is no apparent trace now of the center of this suggested structure, which must have been destroyed by the resurfacing evident over most of Ganymede in the grooved terrain. Another interpretation is that these features are not impact-related rings, but rather internally produced fractures crossing the dark terrain, similiar to the grooved bands. ARC-1979-A79-7107

P-21752 C Range: 1.2 million kilometers This image of Europa shows detail about 20 kilometers across and is somewhat higher resolution than the best Voyager 1 image. The part of Europa shown is the hemisphere that will be viewed at even higher resolution during another Voyager 2 encounter with Europa. Color reconstruction in this image was slightly enhanced to bring out detail in the complicated mottled region on the west limb, containing some of the linear fracture-like features discovered by Voyager 1. The regions in the north and south polar areas which appear bluish in this version are in fact white. ARC-1979-AC79-7084

Range : 85,000 kilometers (53,000 miles) This photo of Jupiter's satellite Ganymede shows ancient cratered terrain. A variety of impact craters of different ages are shown. The brightest craters are the youngest. The ejecta blankets fade with age. The center shows a bright patch that represents the rebounding of the floor of the crater. The dirty ice has lost all topography except for faint circular patterns. Also shown are the 'Callisto type' curved troughs and ridges that mark an ancient enormous impact basin. The basin itself has been destroyed by later geologic processes. Only the ring features are preserved on the ancient surface. Near the bottom of the picture, these curved features are trumcated by the younger grooved terrain. ARC-1979-A79-7097

P-21747 BW Range: 2,200,000 miles This image shows a region of the Jovian atmosphere from approximately 25° N to the equatorial region. The north temperate jet, at approximately 23° N, where the wind speed is about 150 meters per second, is seen as a dark brown line from the left-hand edge to the right-hand corner of the picture. The wispy clouds of the north equatorial belt appear as shades of brown. The lower right-hand corner of the image shows the brighter (white) clouds of the equatorial region. A small blue area is apparent near the lower edge, which corresponds to a region free of the upper clouds, where it is possible to penetrate to cloud layers approximately 60 kilometers below the visible surface. ARC-1979-A79-7081

P-21749 C Range: 6 million kilometers (4 million miles) This photograph of Ganymede, the largest satellite of Jupiter, is shown at approximately the same distance as that photographed at close range by Voyager 1 in March. This picture, taken by Voyager 2, illustrates well the light, bluish regions near the north and south poles. It is known that there is exposed water ice on the surface of Ganymede, and pehaps these polar caps are composed of a light covering of water ice or frost. Voyager 2 will pass within 63,000 kilometers (39,000 miles) of Ganymede. ARC-1979-AC79-7082