PICRYL
PICRYLThe World's Largest Public Domain Source
  • homeHome
  • searchSearch
  • photo_albumStories
  • collectionsCollections
  • infoAbout
  • star_rateUpgrade
  • account_boxLogin

First JATO assisted Flight

JATO Flight Test Crew

Bumper V-2 Launch

Pioneer III Probe

Explorer I Architects

JPL's Hypersonic Wind Tunnel

JPL Key Figures

Aerial View of JPL

Kennedy Receives Mariner 2 Model

Mariner photos presented to President Johnson

Cresent Europa

Voyager First Science Meeting

AERIAL VIEW OF JET PROPULSION LABORATORY IN CALIFORNIA

First Mars Surface Photo

Voyager Spacecraft During Vibration Testing

The Sounds of Earth Record Cover

The Sounds of Earth

Jupiter System Montage

Photo by Voyager 1 Jupiter's satellite Io poses before the giant planet in this photo returned Jan 17, 1979 from a distance of 29 million miles (47 million kilometers). The satellite's shadow can be seen falling on the face of Jupiter at left. Io is traveling from left to right in its one-and-three-quarter-day orbit around Jupiter. Even from this great distance the image of Io shows dark poles and bright equatorial region. Voyager 1 will make its closest approach to Jupiter 174, 000 miles (280,000 kilometer) on March 5. It will then continue to Saturn in November 1980. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from three black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (JPL Ref: P-20946C) ARC-1979-AC79-0143-4

Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still more than 25 million miles (40 million kilometers) away. As the spacecraft draws closer to the planet (about 1 million kilometers a day) more details are emergng in the turbulent clouds. The Great Red Spot shows prominently below center, surrounded by what scientists call a remarkably complex region of the giant planet's atmosphere. An elongated yellow cloud within the Great Red Spot is swirling around the spot's interior boundary in a counterclockwise direction with a period of a little less than six days, confirming the whirlpool-like circulation that astronomers have suspected from ground-based photographs. Ganymede, Jupiter's largest satellite, can be seen to the lower left of the planet. Ganymede is a planet-sized body larger than Mercury. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from there black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (ref: P-20945C Mission Image 1-9) ARC-1979-AC79-0143-3

Photo by Voyager 1 (JPL) Jupiter, its Great Red Spot and three of its four largest satellites are visible in this photo taken Feb 5, 1979 by Voyager 1. The spacecraft was 28.4 million kilomters (17.5 million miles) from the planet at the time. The inner-most large satellite, Io, can be seen against Jupiter's disk. Io is distinguished by its bright, brown-yellow surface. To the right of Jupiter is the satellite Europa, also very bright but with fainter surface markings. The darkest satellite, Callisto (still nearly twice as bright as Earth's Moon), is barely visible at the bottom left of the picture. Callisto shows a bright patch in its northern hemisphere. All tThree orbit Jupiter in the equatorial plane, and appear in their present position because Voyageris above the plane. All three satellites show the same face to Jupiter always -- just as Earth's Moon always shows us the same face. In this photo we see the sides of the satellites that always face away from the planet. Jupiter's colorfully banded atmosphere displays complex patterns highlighted by the Great Red Spot, a large, circulating atmospheric disturbance. This photo was assembled from three black and white negatives by the Image Processing Lab at Jet Propulsion Laboratory. JPL manages and controls the Voyage Project for NASA's Office of Space Science. (ref: P-21083) ARC-1969-AC79-0164-2

This photo of Callisto, outermost of Jupiter's four Galilean satellites, was taken a few minutes after midnight (PST) Feb. 25 by Voyager 1. The distance to Callisto was 8,023,000 kilometers (4.98 million miles). The hemisphere in this picture shows a fairly uniform surface dotted with brighter spots that are up to several hundred kilometers across. Scientists believe the spots may be impact craters but higher-resolution photos will be necessary before the features can be interpreted. Callisto is about the same size as the planet Mercury--about 5,000 kilometers (3,000 miles) in diameter. Callisto is less massive than Mercury, however, giving it a density less than twice that of water. Scientists believe Callisto, therefore, is composed of a mixture of rock and ice (up to about 50 percent by weight). Its surface is darker than those of the other Galilean satellites, but is still about twice as bright as Earth's Moon. This black-and-white photo was taken through a violet filter. Jet Propulsion Laboratory manages and controls the Voyager project for NASA's Office of Space Science. (JPL ref. No. P-21149) ARC-1979-A79-7027

These four pictures of Jupiter's Great Red Spot were taken Feb. 2 and 3, 1979, when Voyager 1 was about 31 million kilometers (19.4 million miles) from Jupiter. The pictures were taken one Jupiter rotation apart, and that together they depict four days in the life of the centuries-old Red Spot. The pictures clearly demonstrate changes in circulation around the Red Spot during the 40-hour period. The photos were taken through a blue filter. Jet Propulsion Laboratory manages the Voyager project for NASA's Office of Space Science. (JPL ref. No. P-21148) ARC-1979-AC79-7008

These four pictures of Jupiter's Great Red Spot were taken Feb. 2 and 3, 1979, when Voyager 1 was about 31 million kilometers (19.4 million miles) from Jupiter. The pictures were taken one Jupiter rotation apart, so that together they depict four days in the life of the centuries-old Red Spot. The pictures clearly demonstrate changes in circulation around the Red Spot during the 40-hour period. The photos were taken through a blue filter. Jet Propulsion Laboratory manages the Voyager project for NASA's Office of Space Science. (JPL ref. No. P-21148) ARC-1979-A79-7028

This mosaic of Jupiter was assembled from nine individual photos taken through an orange filter by Voyager 1 on Feb. 6, 1979, when the spacecraft was 4.7 million miles (7.8 million kilometers) from Jupiter. Distortion of the mosaic, especially where portions of the limb have been fitted together, is caused by rotation of the planet during the 96-second intervals between individual pictures. The large atmospheric feature just below and to the right of center is the Great Red Spot. The complex structure of the cloud formations seen over the entire planet gives some hint of the equally complex motions in the Voyager 1 time-lapse photography. The smallest atomospheric features seen in this view are approximately 85 miles (140 kilometers) across. Voyager project is managed and controlled by Jet Propulsion Laboratory for NASA's Office of Space Science. (JPL ref. No. P-21146) ARC-1979-A79-7029

Saturn System Montage

Solar System Montage

Saturn's Rings

A view of two 11-meter experimental parabolic dishes located at the Test Bed Concentrator Site, operated by the Jet Propulsion Laboratory. Each collector module is composed of many square reflectors that can be rearranged and redirected to determine the optimum dish shape

A view of one of the experimental parabolic dish concentrator modules operated by the Jet Propulsion Laboratory at the Test Bed Concentrator Site. The module has achieved temperatures of 1,500 degrees Fahrenheit

Uranus

Miranda Icy Face

Comet Halley

Uranus as seen by NASA Voyager 2

Voyager Tour Montage

Neptune and Triton

Global Color Mosaic of Triton

Detail of Triton

Triton Dark Plume

Triton Volcanic Plumes

Montage of Neptune and Triton

Neptune Full Disk View

Magellan Orbit Artist Concept

Galileo Images the Moon

The Earth and Moon

Clementine Fully Deployed Artist Concept

This image is the first full picture showing both asteroid 243 Ida and its newly discovered moon to be transmitted to Earth from NASA's Galileo spacecraft--the first conclusive evidence that natural satellites of asteroids exist. Ida is the large object to the left, about 56 kilometers (35 miles long). Ida's natural satellite is the small object to the right. This portrait was taken by Galileo's charge-coupled device (CCD) camera on August 28, 1993, about 14 minutes before the spacecraft's closest approach to the asteriod, from a range of 10,870 kilometers (6,755 miles). Ida is a heavily cratered, irregularly shaped asteroid in the main asteroid belt between Mars and Jupiter-- the 243rd asteroid to be discovered since the first one was found at the beginning of the 19th century. It is a member of a group of asteroids called the Koronis family. The small satellite, which is about 1.5 kilometers (1 mile) across in this view, has yet to be given a name by astronomers. It has been provisionally designated '1993 (243) 1' by the International Astronomical Union. (The numbers denote the year the picture was taken, the asteroid number and the fact that it is the first moon of Ida to be found.) ALthough the satellite appears to be 'next' to Ida it is actually slightly in the foreground, closer to the spacecraft than Ida. Combining this image with data from Galileo's near-infrared mapping spectrometer, the science team estimates that the object is about 100 kilometers (60 miles) away from the center of Ida. This image is one of a six-frame series taken through different color filters, this one in green. The spatial resolution in this image is about 100 meters (330 feet) per pixel. The Galileo spacecraft flew past Ida en route to its final destination, Jupiter, where it will go into orbit in December 1995. The Jet Propulsion Laboratory manages the galileo Project for NASA's Office of Space Science. (JPL ref. No. P-43731) ARC-1994-A91-2018

This image is the first full picture showing both asteroid 243 Ida and its newly discovered moon to be transmitted to Earth from NASA's Galileo spacecraft--the first conclusive evidence that natural satellites of asteroids exist.  Ida is the large object to the left, about 56 kilometers (35 miles long).  Ida's natural satellite is the small object to the right.  This portrait was taken by Galileo's charge-coupled device (CCD) camera on August 28, 1993, about 14 minutes before the spacecraft's closest approach to the asteriod, from a range of 10,870 kilometers (6,755 miles).  Ida is a heavily cratered, irregularly shaped asteroid in the main asteroid belt between Mars and Jupiter-- the 243rd asteroid to be discovered since the first one was found at the beginning of the 19th century.  It is a member of a group of asteroids called the Koronis family.  The small satellite, which is about 1.5 kilometers (1 mile) across in this view, has yet to be given a name by astronomers.  It has been provisionally designated '1993 (243) 1' by the International Astronomical Union.  (The numbers denote the year the picture was taken, the asteroid number and the fact that it is the first moon of Ida to be found.)  ALthough the satellite appears to be 'next' to Ida it is actually slightly in the foreground, closer to the spacecraft than Ida.  Combining this image with data from Galileo's near-infrared mapping spectrometer, the science team estimates that the object is about 100 kilometers (60 miles) away from the center of Ida.  This image is one of a six-frame series taken through different color filters, this one in green.  The spatial resolution in this image is about 100 meters (330 feet) per pixel.  The Galileo spacecraft flew past Ida en route to its final destination, Jupiter, where it will go into orbit in December 1995.  The Jet Propulsion Laboratory manages the galileo Project for NASA's Office of Space Science. (JPL ref. No. P-43731) ARC-1994-A91-2018
This image is the first full picture showing both asteroid 243 Ida and its newly discovered moon to be transmitted to Earth from NASA's Galileo spacecraft--the first conclusive evidence that natural satellites of asteroids exist. Ida is the large object to the left, about 56 kilometers (35 miles long). Ida's natural satellite is the small object to the right. This portrait was taken by Galileo's charge-coupled device (CCD) camera on August 28, 1993, about 14 minutes before the spacecraft's closest approach to the asteriod, from a range of 10,870 kilometers (6,755 miles). Ida is a heavily cratered, irregularly shaped asteroid in the main asteroid belt between Mars and Jupiter-- the 243rd asteroid to be discovered since the first one was found at the beginning of the 19th century. It is a member of a group of asteroids called the Koronis family. The small satellite, which is about 1.5 kilometers (1 mile) across in this view, has yet to be given a name by astronomers. It has been provisionally designated '1993 (243) 1' by the International Astronomical Union. (The numbers denote the year the picture was taken, the asteroid number and the fact that it is the first moon of Ida to be found.) ALthough the satellite appears to be 'next' to Ida it is actually slightly in the foreground, closer to the spacecraft than Ida. Combining this image with data from Galileo's near-infrared mapping spectrometer, the science team estimates that the object is about 100 kilometers (60 miles) away from the center of Ida. This image is one of a six-frame series taken through different color filters, this one in green. The spatial resolution in this image is about 100 meters (330 feet) per pixel. The Galileo spacecraft flew past Ida en route to its final destination, Jupiter, where it will go into orbit in December 1995. The Jet Propulsion Laboratory manages the galileo Project for NASA's Office of Space Science. (JPL ref. No. P-43731) ARC-1994-A91-2018

This is a composite photo, assembled from separate images of Jupiter and Comet P/Shoemaker-Levy 9 as imaged by the Wide Field & Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million KM) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jpiter's magnifient cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. CREDIT: H.A. Weaver, T.E. Smith (Space Telescope Science Institute (STSI)) and J.T. Tranuger, R.W. Evans (Jet Propulsion Laboratory (JPL)) and NASA. (HST ref: STSci-PR94-26a) ARC-1994-AC94-0353-1

This is a composite photo, assembled from separate images of Jupiter and Comet P/Shoemaker-Levy 9 as imaged by the Wide Field & Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST).  Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million KM) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jpiter's magnifient cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter.   The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details.  When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light.  The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes.  CREDIT: H.A. Weaver, T.E. Smith (Space Telescope Science Institute (STSI)) and J.T. Tranuger, R.W. Evans (Jet Propulsion Laboratory (JPL)) and NASA. (HST ref: STSci-PR94-26a) ARC-1994-AC94-0353-1
This is a composite photo, assembled from separate images of Jupiter and Comet P/Shoemaker-Levy 9 as imaged by the Wide Field & Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million KM) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jpiter's magnifient cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. CREDIT: H.A. Weaver, T.E. Smith (Space Telescope Science Institute (STSI)) and J.T. Tranuger, R.W. Evans (Jet Propulsion Laboratory (JPL)) and NASA. (HST ref: STSci-PR94-26a) ARC-1994-AC94-0353-1

Full Disk Views of Io

Cassini Saturn Probe Undergoes Preflight Testing

NASA NEAR Spacecraft Rendezvous with Asteroid Eros Artist Concept

Galileo Over Io Artist Concept

Hubble Finds an Hourglass Nebula around a Dying Star

Cylindrical Projection of Jupiter

Galilean Satellites

Large Brown Oval

Cloud Layers Southeast of the Great Red Spot

Exaggerated Color View of the Great Red Spot

Cloud Layers East of the Great Red Spot

Exaggerated Color East of the Great Red Spot

Io - Full Disk

Saturn With Tethys and Dione

Saturn - False Color of Southern Hemisphere

Saturn - Brown Ovals in Northern Hemisphere

Uranus Rings in False Color

Oberon at Voyager Closest Approach

Miranda - Chevron Grooves

Titania - Highest Resolution Voyager Picture

Neptune - Changes in Great Dark Spot

Neptune - Changes in Great Dark Spot

Neptune Rings and 1989N2

Nereid

1989N1

Triton High Resolution View of Northern Hemisphere

1989N1 Surface Detail

Neptune Dark Spot D2 at High Resolution

Antarctica - Ross Ice Shelf

Gaspra Approach Sequence

Venus - Lineated Plains in Lakshmi Region

Moon - Western Hemisphere

Moon - North Pole

Asteroid Ida - Limb at Closest Approach

Miranda Fractures, Grooves and Craters

Miranda Geologic History Variety of Terrain

Uranus Ring System

Saturn With Rhea and Dione True Color

Titania High-Resolution Color Composite

Uranus Tenth Ring

Ariel - Highest Resolution Color Picture

Miranda High Resolution of Large Fault

Neptune Full Disk

Neptune - Great Dark Spot and Scooter

Neptune Southern Hemisphere

Neptune in False Color

Neptune False Color Image of Haze

Neptune Clouds Showing Vertical Relief

Neptune - True Color of Clouds

Ida and Dactyl in Enhanced Color

Venus as Viewed Through Violet and Near Infrared Filters

Moon Color Visualizations