PICRYL
PICRYLThe World's Largest Public Domain Media Search Engine
XB-70A #1 liftoff with TB-58A chase aircraft

XB-70A #1 liftoff with TB-58A chase aircraft

 
 
description

Summary

Description: This photo shows XB-70A #1 taking off on a research flight, escorted by a TB-58 chase plane. The TB-58 (a prototype B-58 modified as a trainer) had a dash speed of Mach 2. This allowed it to stay close to the XB-70 as it conducted its research maneuvers. When the XB-70 was flying at or near Mach 3, the slower TB-58 could often keep up with it by flying lower and cutting inside the turns in the XB-70's flight path when these occurred. The XB-70 was the world's largest experimental aircraft. It was capable of flight at speeds of three times the speed of sound (roughly 2,000 miles per hour) at altitudes of 70,000 feet. It was used to collect in-flight information for use in the design of future supersonic aircraft, military and civilian. The major objectives of the XB-70 flight research program were to study the airplane's stability and handling characteristics, to evaluate its response to atmospheric turbulence, and to determine the aerodynamic and propulsion performance. In addition there were secondary objectives to measure the noise and friction associated with airflow over the airplane and to determine the levels and extent of the engine noise during takeoff, landing, and ground operations. The XB-70 was about 186 feet long, 33 feet high, with a wingspan of 105 feet. Originally conceived as an advanced bomber for the United States Air Force, the XB-70 was limited to production of two aircraft when it was decided to limit the aircraft's mission to flight research. The first flight of the XB-70 was made on September 21, 1964. The number two XB-70 was destroyed in a mid-air collision on June 8, 1966. Program management of the NASA-USAF research effort was assigned to NASA in March 1967. The final flight was flown on Feb. 4, 1969. Designed by North American Aviation (later North American Rockwell and still later, a division of Boeing) the XB-70 had a long fuselage with a canard or horizontal stabilizer mounted just behind the crew compartment. It had a sharply swept 65.6-percent delta wing. The outer portion of the wing could be folded down in flight to provide greater lateral-directional stability. The airplane had two windshields. A moveable outer windshield was raised for high-speed flight to reduce drag and lowered for greater visibility during takeoff and landing. The forward fuselage was constructed of riveted titanium frames and skin. The remainder of the airplane was constructed almost entirely of stainless steel. The skin was a brazed stainless-steel honeycomb material. Six General Electric YJ93-3 turbojet engines, each in the 30,000-pound-thrust class, powered the XB-70. Internal geometry of the inlets was controllable to maintain the most efficient airflow to the engines...UID: SPD-NIX-ED97-44244-2

The X-planes are a series of experimental United States aircraft and rockets, used to test and evaluate new technologies and aerodynamic concepts. They have an X designator, which indicates the research mission within the US system of aircraft designations. The first, the Bell X-1, became well known in 1947 after it became the first aircraft to break the sound barrier in level flight. Most of the X-planes have been operated by the National Advisory Committee for Aeronautics (NACA) or, later, the National Aeronautics and Space Administration (NASA), often in conjunction with the United States Air Force. The majority of X-plane testing has occurred at Edwards Air Force Base. Some of the X-planes have been well publicized, while others have been developed in secrecy. Most X-planes are not expected to go into full-scale production.

NASA Photo Collection

date_range

Date

1968
create

Source

NASA
copyright

Copyright info

No known copyright restrictions. Read more at https://www.flickr.com/commons/usage/

ExploreNorth American Aviation

Explorebomber jet aircraft